T-antigen expression by peanut agglutinin staining relates to mucosal dysplasia in ulcerative colitis

1985 ◽  
Vol 28 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Eric Pihl ◽  
Anita Peura ◽  
William R. Johnson ◽  
Francis T. McDermott ◽  
Edward S. R. Hughes
1989 ◽  
Vol 32 (12) ◽  
pp. 1055-1059 ◽  
Author(s):  
Jörgen Rutegård ◽  
Lars Åhsgren ◽  
Roger Stenling ◽  
Göran Roos

2020 ◽  
Author(s):  
Wei Zou ◽  
Gau Shoua Vue ◽  
Benedetta Assetta ◽  
Heather Manza ◽  
Walter J. Atwood ◽  
...  

AbstractBK polyomavirus (BKPyV) is a ubiquitous human pathogen, with over 80% of adults worldwide persistently infected. BKPyV infection is usually asymptomatic in healthy people; however, it causes polyomavirus-associated nephropathy in renal transplant patients and hemorrhagic cystitis in bone marrow transplant patients. BKPyV has a circular, double-stranded DNA genome that is divided genetically into three parts: an early region, a late region, and a non-coding control region (NCCR). The NCCR contains the viral DNA replication origin and cis-acting elements regulating viral early and late gene expression. It was previously shown that a BKPyV miRNA expressed from the late strand regulates viral large T antigen expression and limits the replication capacity of archetype BKPyV. A major unanswered question in the field is how expression of the viral miRNA is regulated. Typically, miRNA is expressed from introns in cellular genes but there is no intron readily apparent in the BKPyV from which the miRNA could derive. Here we provide evidence for primary RNA transcripts that circle the genome more than once and include the NCCR. We identified splice junctions resulting from splicing of primary transcripts circling the genome more than once, and Sanger sequencing of RT-PCR products indicates that there are viral transcripts that circle the genome up to four times. Our data suggest that the miRNA is expressed from the intron of these greater-than-genome size primary transcripts.


2006 ◽  
Vol 80 (21) ◽  
pp. 10868-10870 ◽  
Author(s):  
Joanna Gilbert ◽  
Wu Ou ◽  
Jonathan Silver ◽  
Thomas Benjamin

ABSTRACT Early stages of infection by the mouse polyomavirus have been studied using HeLa cells stably expressing small interfering RNA to protein disulfide isomerase (PDI). Infectibility measured by nuclear T antigen expression was reduced commensurately with the degree of PDI downregulation. Infectibility was restored by transfection with a plasmid expressing PDI but not with a control expressing catalytically inactive enzyme. Deconvolution microscopy using fluorescently labeled virus and cellular markers showed that virus reaches the endoplasmic reticulum (ER) normally in cells with reduced PDI but subsequently fails to exit the ER. Simian virus 40 infection was not inhibited in PDI-downregulated cells. The results are discussed in terms of structural differences between the two viruses and current knowledge of virus disassembly in the ER.


Author(s):  
Lucia Cappabianca ◽  
Stefano Guadagni ◽  
Rita Maccarone ◽  
Michela Sebastiano ◽  
Alessandro Chiominto ◽  
...  

Abstract Background Merkel cell carcinomas (MCCs) are rare, aggressive, therapeutically-challenging skin tumours that are increasing in incidence and have poor survival rates. The majority are caused by genomic Merkel cell polyomavirus (MCPyV) integration and MCPyV T-antigen expression. Recently, a potential oncogenic role for the tropomyosin-related tyrosine kinase A receptor (TrkA) has been proposed in MCC. Alternative TrkAIII splicing is a TrkA oncogenic activation mechanism that can be promoted by SV40 large T-antigen, an analogue of MCPyV large T-antigen. In this pilot study, therefore, we have evaluated TrkAIII splicing as a novel potential oncogenic mechanism and therapeutic target in MCPyV positive MCC. Methods Formalin-fixed paraffin-embedded MCC tissues, consisting of 10 stage IV, 1 stage IIIB, 1 stage IIB, 4 stage IIA and 2 stage I tumours, from patients diagnosed and treated from September 2006 to March, 2019, at the University of L’Aquila, L’Aquila, Italy, were compared to 3 primary basal cell carcinomas (BCCs), 3 primary squamous cell carcinomas (SCCs) and 2 normal skin samples by RT-PCR for MCPyV large T-antigen, small T-antigen, VP-1 expression and alternative TrkAIII splicing and by indirect IF for evidence of intracellular TrkA isoform expression and activation. Results 9 of 10 Recurrent stage IV MCCs were from patients (P.1–3) treated with surgery plus loco-regional Melphalan chemotherapy and remaining MMCs, including 1 stage IV tumour, were from patients treated with surgery alone (P. 4–11). All MCPyV positive MCCs exhibiting MCPyV large T-antigen expression (17 of 18MCCs, 90%) exhibited alternative TrkAIII mRNA splicing (100%), which was exclusive in a significant number and predominant (> 50%) in all stage IV MCCs and the majority of stage 1-III MCCs. MCCs with higher TrkAIII to 18S rRNA expression ratios also exhibited strong or intermediate immunoreactivity to anti-TrkA antibodies, consistent with cytoplasmic TrkAIII expression and activation. In contrast, the MCPyV negative MCC, BCCs, SCCs and normal skin tissues all exhibited exclusive fully-spliced TrkA mRNA expression, associated with variable immunoreactivity for non-phosphorylated but not phosphorylated TrkA. Conclusions MCPyV positive MCCs but not MCPyV negative MCC, BCCs and SCCs exhibit predominant alternative TrkAIII splicing, with evidence of intracellular TrkAIII activation. This establishes a new potential MCC subset, unveils a novel potential MCPyV oncogenic mechanism and identifies TrkAIII as a novel potential therapeutic target in MCPyV positive MCC.


1978 ◽  
Vol 57 (4) ◽  
pp. 349-354 ◽  
Author(s):  
A. S. Lubiniecki ◽  
W. A. Blattner ◽  
V. Cruttenden ◽  
M. Gunnell ◽  
G. C. Tarr ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 420-420
Author(s):  
Melissa M. Lee-Sundlov ◽  
Renata Grozovsky ◽  
Silvia Giannini ◽  
Martina McGrath ◽  
Haley Elizabeth Ramsey ◽  
...  

Abstract Glycosylation defects have been associated with low platelet counts. Six genes encoding sialyltransferases (ST), ST3gal1 to 6, that synthesize an α2,3 sialic acid (SA) linkage have been identified in the mammalian genome, and deletion of St3gal1 and St3gal4 genes has been associated with macrothrombocytopenia in mice. Despite the similarity in transferring SA in a α2,3-linkage to terminal galactose residues, St3gal1 and St3gal4 sialylate distinct glycans: St3gal1 is associated with core 1 O-glycan Galβ1,3GalNAcα1-Ser/Thr expression, also known as tumor-associated or Thomsen-Friedenreich antigen (T-antigen), whereas St3gal4 sialylates lactosaminyl Galβ1,4GlcNAc N-glycans. It has been previously shown that St3gal4-null platelets are cleared by the hepatic Ashwell-Morell receptor, causing severe thrombocytopenia in these mice. Herein, we generated St3gal1loxP/PF4+ mice specifically lacking ST3Gal1 in the megakaryocyte (MK) lineage to investigate the detailed mechanisms of macrothrombocytopenia associated with St3gal1 deficiency. Both St3gal1loxP/PF4+ circulating platelets and bone marrow (BM) MKs had increased T-antigen expression, compared to control, as evidenced by peanut agglutinin (PNA) binding. As expected, other blood cell lineages had no increase in T-antigen expression. Blood platelet counts were reduced by ~50% and platelets were enlarged in St3gal1loxP/PF4+ mice, compared to control, despite a virtually indistinguishable platelet clearance. BM MK numbers were normal despite the observed thrombocytopenia, BM MK colony forming units (CFUs) were reduced and in vitro proplatelet production was normal in St3gal1loxP/PF4+ mice, suggesting that extrinsic factors in the St3gal1loxP/PF4+ BM environment affected platelet production. We hypothesize that recognition of the T-antigen epitope on MKs mediate phagocytosis by macrophages. Macrophages in St3gal1loxP/PF4+ mice had increased expression of CD68 (macrosialin), indicative of an activated macrophage state. Flow cytometric analysis of BM derived macrophages of St3gal1loxP/PF4+ mice showed an increased population of resolving M2-type macrophages, which are normally involved in apoptotic cell clearance. Additionally, St3gal1loxP/PF4+ BM smears revealed increased hemophagocytosis, as evidenced by May-Grunwald/Giemsa, indicative of an unspecific increase in phagocytic macrophages. Macrophage ablation by in vivo injection of clodronate-encapsulated liposomes significantly reduced the numbers of activated macrophages in St3gal1loxP/PF4+ mice, thereby normalizing blood platelet counts and size. Taken together data show the contrasting effects of different SA loss on platelet homeostasis: Platelets lacking α2,3-linked SA on N-glycans have increased platelet clearance, whereas a lack of α2,3-linked on O-glycans do not affect platelet half-life, but cause defective thrombopoiesis in MKs. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document