High density lipoproteins and the growth of vascular endothelial cells in serum-free medium

In Vitro ◽  
1981 ◽  
Vol 17 (6) ◽  
pp. 519-530 ◽  
Author(s):  
J.-P. -P. Tauber ◽  
J. Cheng ◽  
S. Massoglia ◽  
D. Gospodarowicz
1995 ◽  
Vol 22 (9-10) ◽  
pp. 741-748
Author(s):  
Toshiyuki TAMAGAKI ◽  
Shohei SAWADA ◽  
Sumio KOMATSU ◽  
Naoaki AKAMATSU ◽  
Masahito YAMAGAMI ◽  
...  

1993 ◽  
Vol 104 (1) ◽  
pp. 211-218
Author(s):  
Q.R. Yang ◽  
R.M. Smets ◽  
A. Neetens ◽  
D. Vanden Berghe

Mitogenic activities of human retinal pigment epithelial cell-conditioned medium (HRPE-CM) with different effects, such as inhibition, stimulation or no effect, on the proliferation of vascular endothelial cells (EC) in vitro have been reported. In this study, 14 HRPE cell lines were established from normal human eyes. Human umbilical vein endothelial cells (HUVEC) in the early passages were used as target cells to detect the mitogenic activity of HRPE-CM on the growth of vascular EC. Our results confirm that HRPE cells in culture continuously synthesize and secrete HUVEC growth substance(s) into a serum-free medium. The ability of HRPE cell lines to produce this mitogen seem unrelated either to in vivo donor factors or to in vitro cell life span. Using an enzyme-linked immunosorbance assay, we demonstrated that only HRPE cell extract, not HRPE-CM, can be recognized by basic fibroblast growth factor (bFGF)-specific antibody, though identical bioactivities on the growth of HUVEC were found in both preparations. The active component in HRPE-CM was heat- and trypsin-sensitive, and stable at extremes of pH (2.5 to 10.0). In addition, the bioactive molecule could not pass through a M(r) 30,000 cut-off membrane, suggesting that it is a fairly high molecular mass polypeptide. These observations suggest that the EC growth factor in HRPE-CM is distinct from fibroblast growth factors (FGFs).


1996 ◽  
Vol 123 (1-2) ◽  
pp. 73-82 ◽  
Author(s):  
Toshiyuki Tamagaki ◽  
Shohei Sawada ◽  
Hitoshi Imamura ◽  
Yuusuke Tada ◽  
Seiki Yamasaki ◽  
...  

1996 ◽  
Vol 76 (02) ◽  
pp. 258-262 ◽  
Author(s):  
Robert I Roth

SummaryHuman endothelial cells, when incubated with bacterial endotoxin (lipopolysaccharide, LPS), modify their surface in association with prominent production of procoagulant tissue factor (TF) activity. This deleterious biological effect of LPS has been shown previously to be enhanced approximately 10-fold by the presence of hemoglobin (Hb), a recently recognized LPS binding protein that causes disaggregation of LPS and increases the biological activity of LPS in a number of in vitro assays. The present study was performed to test the hypothesis that Hb enhances the LPS-induced procoagulant activity of human umbilical vein endothelial cells (HUVEC) by increasing LPS binding to the cells. The binding of 3H-LPS to HUVEC was determined in the absence or presence of Hb or two other known LPS-binding proteins, human serum albumin (HSA) and IgG. LPS binding was substantially increased in the presence of Hb, in a Hb concentration-dependent manner, but was not increased by HSA or IgG. Hb enhancement of LPS binding was observed in serum-free medium, indicating that there was no additional requirement for any of the serum factors known to participate in the interaction of LPS with cells (e.g., lipopolysaccharide (LPS)-binding protein (LBP) and soluble CD14 (sCD14)). Hb enhancement of LPS binding also was observed in the more physiologic condition of 100% plasma. LPS-induced TF activity was stimulated by Hb, but not by HSA or IgG. In serum-free medium, TF activity was not stimulated under any of the conditions tested. Ultrafiltration of LPS was dramatically increased after incubation with Hb but not with HSA or IgG, suggesting that LPS disaggregation by Hb was responsible for the enhanced binding of LPS to HUVEC and the subsequent stimulation of TF activity.


Sign in / Sign up

Export Citation Format

Share Document