High temperature phase chemistries and solidification mode prediction in nitrogen-strengthened austenitic stainless steels

1984 ◽  
Vol 15 (7) ◽  
pp. 1339-1351 ◽  
Author(s):  
Ann M. Ritter ◽  
Michael F. Henry ◽  
Warren F. Savage
1995 ◽  
Vol 5 (7) ◽  
pp. 763-769 ◽  
Author(s):  
S. Rios ◽  
W. Paulus ◽  
A. Cousson ◽  
M. Quilichini ◽  
G. Heger ◽  
...  

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-599-C6-601 ◽  
Author(s):  
T. Wasiutynski ◽  
I. Natkaniec ◽  
A. I. Belushkin

Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract ALLOY 0Cr25Ni6Mo3CuN is one of four grades of duplex stainless steel that were developed and have found wide applications in China since 1980. In oil refinement and the petrochemical processing industries, they have substituted for austenitic stainless steels in many types of equipment, valves, and pump parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming and joining. Filing Code: SS-706. Producer or source: Central Iron & Steel Research Institute.


2018 ◽  
Vol 941 ◽  
pp. 679-685
Author(s):  
Kazuyoshi Saida ◽  
Tomo Ogura

The hot cracking (solidification cracking) susceptibility in the weld metals of duplex stainless steels were quantitatively evaluated by Transverse-Varestraint test with gas tungsten arc welding (GTAW) and laser beam welding (LBW). Three kinds of duplex stainless steels (lean, standard and super duplex stainless steels) were used for evaluation. The solidification brittle temperature ranges (BTR) of duplex stainless steels were 58K, 60K and 76K for standard, lean and super duplex stainless steels, respectively, and were comparable to those of austenitic stainless steels with FA solidification mode. The BTRs in LBW were 10-15K lower than those in GTAW for any steels. In order to clarify the governing factors of solidification cracking in duplex stainless steels, the solidification segregation behaviours of alloying and impurity elements were numerically analysed during GTAW and LBW. Although the harmful elements to solidification cracking such as P, S and C were segregated in the residual liquid phase in any joints, the solidification segregation of P, S and C in LBW was inhibited compared with GTAW due to the rapid cooling rate in LBW. It followed that the decreased solidification cracking susceptibility of duplex stainless steels in LBW would be mainly attributed to the suppression of solidification segregation of P, S and C.


1989 ◽  
Vol 100 (1) ◽  
pp. 135-141 ◽  
Author(s):  
A. I. Baranov ◽  
V. P. Khiznichenko ◽  
L. A. Shuvalov

2021 ◽  
Vol 150 ◽  
pp. 111528
Author(s):  
Ming Liu ◽  
Ehsan Shamil Omaraa ◽  
Jia Qi ◽  
Pegah Haseli ◽  
Jumal Ibrahim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document