Investigation of fatigue-induced socket-welded joint failures for small-bore piping used in power plants

2001 ◽  
Vol 1 (2) ◽  
pp. 71-82 ◽  
Author(s):  
Daniel N. Hopkins ◽  
Daniel J. Benac
Keyword(s):  
2017 ◽  
Vol 62 (1) ◽  
pp. 327-333 ◽  
Author(s):  
J. Pikuła ◽  
M. Łomozik ◽  
T. Pfeifer

Abstract Welded installations failures of power plants, which are often result from a high degree of wear, requires suitable repairs. In the case of cracks formed in the weld bead of waterwall, weld bead is removed and new welded joint is prepared. However, it is associated with consecutive thermal cycles, which affect properties of heat affected zone of welded joint. This study presents the influence of multiple manual metal arc welding associated with repair activities of long operated waterwall of boiler steel on properties of repair welded joints. The work contains the results of macro and microscopic metallographic examination as well as the results of hardness measurements.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1285 ◽  
Author(s):  
Kai Yang ◽  
Yingjie Zhang ◽  
Jianping Zhao

P91 steel is a typical steel used in the manufacture of boilers in ultra-supercritical power plants and heat exchangers in nuclear power plants. For the long-term serviced P91 steel pressurized structures, the main failure mode is the welded joint failure, especially the heat affected zone (HAZ) failure. Repair welding technique is an effective method for repairing such local defects. However, the thermal shock composed of high temperature and thermal stress in the repair welding process will pose a critical loading condition for the existing defects near the heat source which cannot be detected by conventional means. So, the evaluation of structural integrity for the welded joint in the thermal-mechanical coupling field is necessary. In this work, the crack propagation law in the HAZ for the P91 steel welded joint was investigated under repair welding thermal loads. The weld repair model of the P91 steel welded joint was established by ABAQUS. The transient temperature field and stress field in repair welding process were calculated by relevant user subroutines and sequential coupling simulation method. The residual stress was determined by the impact indentation strain method to verify the feasibility of the finite element (FE) model and simulation method. In order to obtain the crack propagation path, the elastoplastic fracture analysis of the welded joint with initial crack was performed based on the extended finite element method (XFEM). The influence of different welding linear energy on the crack propagation was analyzed. The results show that the cracks in the HAZ propagate perpendicular to the surface and tend to deflect to the welding seam under repair welding thermal loads. The crack propagation occurs in the early stage of cooling. Higher welding linear energy leads to larger HAZ and higher overall temperature. With the increase of welding linear energy, the length and critical distance of the crack propagation increase. Therefore, low welding linear energy can effectively inhibit the crack propagation in the HAZ. The above calculation and analysis provide a reference for the thermal shock damage analysis of repair welding process, which is of great significance to improving the safety and reliability of weld repaired components.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
J. Wang ◽  
G. Z. Wang ◽  
F. Z. Xuan ◽  
S. T. Tu

In this paper, the J-R curves of two cracks (A508 HAZ crack 2 and A508/Alloy52Mb interface crack 3) located at the weakest region in an Alloy52M dissimilar metal welded joint (DMWJ) for connecting pipe-nozzle of nuclear pressure vessel have been measured by using single edge-notched bend (SENB) specimens with different crack depths a/W (different constraint). Based on the modified T-stress constraint parameter τ*, the equations of constraint-dependent J-R curves for the crack 2 and crack 3 were obtained. The predicted J-R curves using different constraint equations derived from the three pairs of crack growth amount all agree with the experimental J-R curves. The results show that the modified T-stress approach for obtaining constraint-dependent J-R curves of homogeneous materials can also be used for the DMWJs with highly heterogeneous mechanical properties (local strength mismatches) in nuclear power plants. The use of the constraint-dependent J-R curves may increase the accuracy of structural integrity design and assessment for the DMWJs of nuclear pressure vessels.


2010 ◽  
Vol 118-120 ◽  
pp. 156-160 ◽  
Author(s):  
Guo Dong Zhang ◽  
Yan Fen Zhao ◽  
Fei Xue ◽  
Zhao Xi Wang ◽  
Chang Yu Zhou

At the present time, as the steam conditions and capability of the supercritical power unit increasing, the unit reliability is an important factor for the unit efficiency. High temperature, thick walled pipes are widely used in power plants and chemical plants. In this paper, life of the welded joint was predicted by the methods of skeletal point (SP) rupture stress rupture stress, which was calculated by finite element method (FEM). For the life prediction of welded component, the continuum damage mechanics was employed too. The life prediction of the welded joint by SP rupture stress was compared with the life prediction by the method of continuum damage mechanics (CDM). The research results showed that the two predicted methods were consistent. So, it can be concluded that the SP rupture stress can be used for predicting life of the high temperature welded component. The SP rupture stress method was used conveniently for the structure of power plant or other high temperature components.


2012 ◽  
Vol 476-478 ◽  
pp. 2590-2593
Author(s):  
Shi Tao Li ◽  
Hong Sheng Cai ◽  
Jing Yang

Ultrasonic guided wave method used for detection of cracks in the desuperheater header and main steam pipes of boiler in power plants has been reported. The dispersion curves of the guided wave for the main steam pipe were calculated and the wave modes used for the detection of notches were verified experimentally. One defect was found at the welded joint of the low temperature pipe on the furnace side. The time of flight diffraction (TOFD) was also carried out to verify the experimental results. The length, depth and height of the defect are 1200 mm, 18.9 mm and 5.5 mm, respectively. And one circular crack was found inside of the desuperheater header.


Sign in / Sign up

Export Citation Format

Share Document