A study of design spectra based on attenuation relationship of ground motion

2001 ◽  
Vol 14 (6) ◽  
pp. 705-710
Author(s):  
Yong-jun Ni ◽  
Xi Zhu
1987 ◽  
Vol 77 (4) ◽  
pp. 1110-1126
Author(s):  
Anne S. Kiremidjian ◽  
Shigeru Suzuki

Abstract A stochastic model is presented for estimating probabilities of exceeding site ground motions due to temporally dependent earthquake events. The model reflects the hypothesized dependence of the size of large earthquake events on the time of occurrence of the last major earthquake. An empirical attenuation relationship is used to describe the ground motion at a site originating from a well-defined fault system. The application of the model to the Middle America Trench is discussed. The seismic hazard potential in Mexico City is computed in terms of probabilities of exceeding peak ground acceleration levels. The results indicate that consideration of the seismic gap is important for estimating the seismic hazard at a site. It is also observed that site hazard estimates are greatly dependent on the specific attenuation relationship used. The need for other approaches of ground motion estimation is recognized.


2011 ◽  
Vol 27 (3) ◽  
pp. 927-937 ◽  
Author(s):  
Jonathan P. Stewart ◽  
Norman A. Abrahamson ◽  
Gail M. Atkinson ◽  
Jack W. Baker ◽  
David M. Boore ◽  
...  

The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.


2005 ◽  
Vol 21 (4) ◽  
pp. 1137-1156 ◽  
Author(s):  
Min Wang ◽  
Tsuyoshi Takada

It is very important to estimate a macrospatial correlation of seismic ground motion intensities for earthquake damage predictions, building portfolio analyses etc., whereby damage in different locations has to be taken into account simultaneously. This study focuses on spatial correlation of the residual value between an observed and a predicted ground motion intensity, which is estimated by an empirical mean attenuation relationship. The residual value is modeled in such a way that the joint probability density function (PDF) of seismic ground-motion intensity can be characterized by the spatial correlation model as well as an empirical mean attenuation relationship, assuming that it constitutes a homogeneous two-dimensional stochastic field. Using the dense observation data of earthquakes that occurred in Japan and Taiwan in recent years, the macrospatial correlation model is proposed and the assumption of homogeneity is verified in this paper.


Sign in / Sign up

Export Citation Format

Share Document