Alterations in free radical scavenger system profile of type I diabetic rat brain

1998 ◽  
Vol 35 (1-3) ◽  
pp. 187-202 ◽  
Author(s):  
Sanjeev Kumar Bhardwaj ◽  
Poonam Sharma ◽  
Gurcharan Kaur
2007 ◽  
Vol 21 (2) ◽  
pp. 91-103 ◽  
Author(s):  
Helan Xiao ◽  
Guoping Cai ◽  
Mingyao Liu

Extracellular matrix (ECM) plays an important role in cell differentiation, growth, migration and apoptosis. Collagen is the most abundant protein familyin vivo, but its function has still not been clearly defined yet. Reactive oxygen species (ROS) have a central role in oxidative cell stress. Electron spin resonance (ESR) spectroscopy indicates that type I collagen could uniquely scavenge hydroxyl radicals in dose- and time-dependent manner; whereas BSA and gelatin (a denatured collagen) have no such an effect. However, the mechanism by which type I collagen scavenges hydroxyl radicals is different from that of GSH, a well-known free radical scavenger. Using a new method, two-dimensional FTIR correlation analysis, for the first time, we show that the order of functional group changes of type I collagen in this process is amide I earlier than amide II than amide III than –CH– thanν(C=O). The results indicates that the structure of the main chain of collagen changed first, followed by more residue groupν(C=O) exposed to hydroxyl radicals. The reaction with the carbonyl group in collagen causes the hydroxyl free radicals to be scavenged. Therefore, ECM can effectively scavenge ROS under normal physiological conditions. When the proteins of ECM were denatured in the same way as gelatin, they lost their function as a free radical scavenger. All of these results provide new insight into therapy or prevention of oxidative stress, apoptosis and ageing.


2004 ◽  
Vol 26 (3) ◽  
pp. 342-348 ◽  
Author(s):  
Wenri Zhang ◽  
Keiko Sato ◽  
Takeshi Hayashi ◽  
Nobuhiko Omori ◽  
Isao Nagano ◽  
...  

Resuscitation ◽  
1998 ◽  
Vol 39 (1-2) ◽  
pp. 107-113 ◽  
Author(s):  
Pawel Grieb ◽  
Miroslaw S. Ryba ◽  
Grzegorz S. Debicki ◽  
Wanda Gordon-Krajcer ◽  
Slawomir Januszewski ◽  
...  

2000 ◽  
Vol 20 (2) ◽  
pp. 350-358 ◽  
Author(s):  
Naoto Omata ◽  
Tetsuhito Murata ◽  
Yasuhisa Fujibayashi ◽  
Atsuo Waki ◽  
Norihiro Sadato ◽  
...  

Dynamic changes in the regional cerebral glucose metabolic rate induced by hypoxia/reoxygenation or ischemia/reperfusion were investigated with a positron autoradiography technique. Fresh rat brain slices were incubated with [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) in oxygenated Krebs-Ringer solution at 36°C, and serial two-dimensional time-resolved images of [18F]FDG uptake in the slices were obtained. In the case of loading hypoxia (oxygen deprivation)/pseudoischemia (oxygen and glucose deprivation) for various periods of time, the net influx constant ( K) of [18F]FDG at preloading and after reoxygenation/pseudoreperfusion (post-loading) was quantitatively evaluated by applying the Patlak graphical method to the image data. Regardless of the brain region, with hypoxia lasting ≥20 minutes, the postloading K value was decreased compared with the unloaded control, whereas with pseudoischemia of ≤40 minutes, approximately the same level as the unloaded control was maintained. Next, the neuroprotective effect against hypoxia/pseudoischemia loading induced by the addition of a free radical scavenger or an N-methyl-D-aspartate (NMDA) antagonist was assessed by determining whether a decrease in the postloading K value was prevented. Whereas with 20-minute hypoxia, both agents exhibited a neuroprotective effect, in the case of 50-minute pseudoischemia, only the NMDA antagonist did so, with the free radical scavenger being ineffective. These results demonstrate that hypoxia causes irreversible neuronal damage within a shorter period than ischemia, with both free radicals and glutamate suggested to be involved in tandem in the neurotoxicity induced by hypoxia, whereas glutamate alone is involved in ischemic neurotoxicity.


1996 ◽  
Vol 308 (2) ◽  
pp. 219-225 ◽  
Author(s):  
Michael Gassen ◽  
Yelena Glinka ◽  
Bilha Pinchasi ◽  
Moussa B.H. Youdim

2019 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Kartini Kartini ◽  
Azminah Azminah

In order to prepare standardized extract, optimization of extraction conditions of grape seed has been done. These conditions are type of menstrum (50, 70 and 96% of ethanolic solution), length of extraction (1, 2 and 4 hours) also method of evaporation (reduced pressure and opened air). Activity on free radical scavenger used as parameters to determine optimum conditions. Based on EC50 (concentration which scavenge 50% amount of free radical) can be concluded that optimum condition for extracting antioxidant active compound from grape seed are 70% ethanolic solution as menstrum, length of extraction 1 hour and evaporation on opened air use water bath.


2020 ◽  
Vol 10 (01) ◽  
pp. e104-e109
Author(s):  
Antonio Molina-Carballo ◽  
Antonio Emilio Jerez-Calero ◽  
Antonio Muñoz-Hoyos

AbstractMelatonin, produced in every cell that possesses mitochondria, acts as an endogenous free radical scavenger, and improves energetic metabolism and immune function, by complex molecular crosstalk with other intracellular compounds. There is greatly increasing evidence regarding beneficial effects of acute and chronic administration of high melatonin doses, in infectious, developmental, and degenerative pathologies, as an endothelial cell and every cell protectant.


Sign in / Sign up

Export Citation Format

Share Document