Crystallization of poly(vinylidene fluoride)-SiO2 hybrid composites prepared by a Sol-gel process

2001 ◽  
Vol 2 (3) ◽  
pp. 135-140 ◽  
Author(s):  
Jae Whan Cho ◽  
Kyung Il Sul
Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3265 ◽  
Author(s):  
Li ◽  
Li ◽  
Li ◽  
Guan ◽  
Zheng ◽  
...  

A new synthesis method for organic–inorganic hybrid Poly(vinylidene fluoride)-SiO2 cation-change membranes (CEMs) is proposed. This method involves mixing tetraethyl orthosilicate (TEOS) and 3-mercapto-propyl-triethoxy-silane (MPTES) into a polyvinylidene fluoride (PVDF) sol-gel solution. The resulting slurry was used to prepare films, which were immersed in 0.01 M HCl, which caused hydrolysis and polycondensation between the MPTES and TEOS. The resulting Si-O-Si polymers chains intertwined and/or penetrated the PVDF skeleton, significantly improving the mechanical strength of the resulting hybrid PVDF-SiO2 CEMs. The -SH functional groups of MPTES oxidized to-SO3H, which contributed to the excellent permeability of these CEMs. The surface morphology, hybrid structure, oxidative stability, and physicochemical properties (IEC, water uptake, membrane resistance, membrane potential, transport number, and selective permittivity) of the CEMs obtained in this work were characterized using scanning electron microscope and Fourier transform infrared spectroscopy, as well as electrochemical testing. Tests to analyze the oxidative stability, water uptake, membrane potential, and selective permeability were also performed. Our organic–inorganic hybrid PVDF-SiO2 CEMs demonstrated higher oxidative stability and lower resistance than commercial Ionsep-HC-C membranes with a hydrocarbon structure. Thus, the synthesis method described in this work is very promising for the production of very efficient CEMs. In addition, the physical and electrochemical properties of the PVDF-SiO2 CEMs are comparable to the Ionsep-HC-C membranes. The electrolysis of the concentrated CoCl2 solution performed using PVDF-SiO2-6 and Ionsep-HC-C CEMs showed that at the same current density, Co2+ production, and current efficiency of the PVDF-SiO2-6 CEM membrane were slightly higher than those obtained using the Ionsep-HC-C membrane. Therefore, our novel membrane might be suitable for the recovery of cobalt from concentrated CoCl2 solutions.


1991 ◽  
Vol 43 (3) ◽  
pp. 535-541 ◽  
Author(s):  
Y. Rosenberg ◽  
A. Siegmann ◽  
M. Narkis ◽  
S. Shkolnik

Author(s):  
James E. Mark ◽  
Harry R. Allcock ◽  
Robert West

A relatively new area that involves silicon-containing materials is the synthesis of “ultrastructure” materials, that is materials in which structure can be controlled at the level of around 100 Å. An example of such a synthesis is the “sol-gel” hydrolysis of alkoxysilanes (organosilicates) to give silica, SiO2. The reaction is complicated, involving polymerization and branching, but a typical overall reaction may be written . . . Si(OR)4 + 2H2O → SiO2 + 4ROH (1) . . . where the Si(OR)4 organometallic species is typically tetraethoxysilane (tetraethylorthosilicate) (TEOS, with R being C2H5). In this application, the precursor compound is hydrolyzed and then condensed to polymeric chains, the chains become more and more branched, and finally a continuous highly swollen gel is formed. It is first dried at moderately low temperatures to remove volatile species, and then is fired into a porous ceramic object. It can then be densified, if desired, and machined into a final ceramic part. Not surprisingly, the production of ceramics by this novel route has generated a great deal of interest. Its advantages, over the usual “heat-and-beat” (e.g., sintering) approach to ceramics, is (i) the higher purity of the starting materials, (ii) the relatively low temperatures required, (iii) the possibility of controlling the ultrastructure of the ceramic (to reduce the number of microscopic flaws that lead to brittleness), (iv) the ease with which ceramic coatings can be formed, and (v) the ease with which ceramic alloys can be prepared (for example, by hydrolyzing solutions of both silicates and titanates). This approach has been used to form ceramic-like phases in a wide variety of polymers. The one which has been studied the most in this regard is poly(dimethylsiloxane) (PDMS), the semi-inorganic polymer featured extensively in Chapter 4. This is due to PDMS being in the class of relatively weak elastomers most in need of reinforcement, and being capable of easily absorbing the precursor materials generally used in the sol-gel process. The same hydrolyses can be carried out within a polymeric matrix to generate particles of the ceramic material, typically with an average diameter of a few hundred angstroms. The polymer typically has end groups, such as hydroxyls, that can participate in the hydrolysis-condensation reactions.


2013 ◽  
Vol 645 ◽  
pp. 150-153
Author(s):  
Siti Soleha Jonit ◽  
Madzlan Aziz ◽  
Rita Sundari

Doping magnesium ferrites (MgFe2 O4) with Mn, Co and Ni, which were synthesized by sol gel method using citric acid and polyvinyl alcohol (P VA) and calcined at 500oC, showed interesting electrochemical featur es based on their cyclic voltammetric (CV) characteristics using 5 µL ferrite – poly vinylidene fluoride in ethano l deposited on a screen printed carbon electrode (SPCE) in a mixture of 1.0 M KOH and ferricyanide solution recorded with a scan rate of 0.02 Vs -1. The Mn doped magnesium ferrite (x = 0.9) showed the most remarkable CV performance over other doped element (Co and Ni) and un-doped magnesiu m ferrites. The surface morphology of doped ferrites was studied by applying a field emissi on scanning electron microscope (FESEM) in conjunction with an energy dispersive X-ray spect roscopy (EDX) analysis. The results revealed that Mn posed the highest percentage on the surface ( ≈ 21.5 %), followed by Co (≈ 19.5%) and Ni ( ≈ 6.7%) with respect to x = 0.9 of M0.9Mg0.1Fe 2 O4 (M = Co, Mn and Ni) at 500oC calcination. The study showed the possibility of yielding semi conducting ferrites using own fabricated magnesium ferrite and its metal doping.


Sign in / Sign up

Export Citation Format

Share Document