In vitro assembly of plant tubulin in the absence of microtubule-stabilizing reagents

2000 ◽  
Vol 45 (24) ◽  
pp. 2258-2263 ◽  
Author(s):  
Shanjin Huang ◽  
Haiyun Ren ◽  
Ming Yuan
Author(s):  
Mary Beth Downs ◽  
Wilson Ribot ◽  
Joseph W. Farchaus

Many bacteria possess surface layers (S-layers) that consist of a two-dimensional protein lattice external to the cell envelope. These S-layer arrays are usually composed of a single species of protein or glycoprotein and are not covalently linked to the underlying cell wall. When removed from the cell, S-layer proteins often reassemble into a lattice identical to that found on the cell, even without supporting cell wall fragments. S-layers exist at the interface between the cell and its environment and probably serve as molecular sieves that exclude destructive macromolecules while allowing passage of small nutrients and secreted proteins. Some S-layers are refractory to ingestion by macrophages and, generally, bacteria are more virulent when S-layers are present.When grown in rich medium under aerobic conditions, B. anthracis strain Delta Sterne-1 secretes large amounts of a proteinaceous extractable antigen 1 (EA1) into the growth medium. Immunocytochemistry with rabbit polyclonal anti-EAl antibody made against the secreted protein and gold-conjugated goat anti-rabbit IgG showed that EAI was localized at the cell surface (fig 1), which suggests its role as an S-layer protein.


1974 ◽  
Vol 249 (13) ◽  
pp. 4175-4180 ◽  
Author(s):  
Sidney Shifrin ◽  
Catherine L. Parrott
Keyword(s):  

2014 ◽  
Vol 88 (6) ◽  
pp. 3577-3585 ◽  
Author(s):  
J. B. Munro ◽  
A. Nath ◽  
M. Farber ◽  
S. A. K. Datta ◽  
A. Rein ◽  
...  

1981 ◽  
Vol 7 (5) ◽  
pp. 621-632 ◽  
Author(s):  
D. L. Simmons ◽  
N. K. Patel ◽  
M. Chénier ◽  
A. A. Legore ◽  
F. Cesari ◽  
...  

2010 ◽  
Vol 84 (18) ◽  
pp. 9350-9358 ◽  
Author(s):  
Alexis Huet ◽  
James F. Conway ◽  
Lucienne Letellier ◽  
Pascale Boulanger

ABSTRACT The Siphoviridae coliphage T5 differs from other members of this family by the size of its genome (121 kbp) and by its large icosahedral capsid (90 nm), which is organized with T=13 geometry. T5 does not encode a separate scaffolding protein, but its head protein, pb8, contains a 159-residue aminoterminal scaffolding domain (Δ domain) that is the mature capsid. We have deciphered the early events of T5 shell assembly starting from purified pb8 with its Δ domain (pb8p). The self assembly of pb8p is regulated by salt conditions and leads to structures with distinct morphologies. Expanded tubes are formed in the presence of NaCl, whereas Ca2+ promotes the association of pb8p into contracted tubes and procapsids. Procapsids display an angular organization and 20-nm-long internal radial structures identified as the Δ domain. The T5 head maturation protease pb11 specifically cleaves the Δ domain of contracted and expanded tubes. Ca2+ is not required for proteolytic activity but for the organization of the Δ domain. Taken together, these data indicate that pb8p carries all of the information in its primary sequence to assemble in vitro without the requirement of the portal and accessory proteins. Furthermore, Ca2+ plays a key role in introducing the conformational diversity that permits the formation of a stable procapsid. Phage T5 is the first example of a viral capsid consisting of quasi-equivalent hexamers and pentamers whose assembly can be carried out in vitro, starting from the major head protein with its scaffolding domain, and whose endpoint is an icosahedral T=13 particle.


1983 ◽  
Vol 96 (5) ◽  
pp. 1298-1305 ◽  
Author(s):  
D B Murphy ◽  
R R Hiebsch ◽  
K T Wallis

Microtubule protein purified from brain tissue by cycles of in vitro assembly-disassembly contains ATPase activity that has been postulated to be associated with microtubule-associated proteins (MAPs) and therefore significant for studies of microtubule-dependent motility. In this paper we demonstrate that greater than 90% of the ATPase activity is particulate in nature and may be derived from contaminating membrane vesicles. We also show that the MAPs (MAP-1, MAP-2, and tau factors) and other high molecular weight polypeptides do not contain significant amounts of ATPase activity. These findings do not support the concept of "brain dynein" or of MAPs with ATPase activity.


1990 ◽  
Vol 96 (2) ◽  
pp. 293-302
Author(s):  
J.E. Honts ◽  
N.E. Williams

The cortex of the ciliated protozoan Tetrahymena contains a number of fibrous elements, including a network of filaments that pervades the feeding organelle of this organism. The cluster of polypeptides (79–89K; K = 10(3) Mr) in Tetrahymena pyriformis GL-C that constitute these filaments has been purified by in vitro assembly after solubilization in 1.0 M KI. Four distinct sets of these polypeptides, designated ‘tetrins’, have been shown to be distinguishable from each other by immunochemical and biochemical criteria. The smallest filaments reassembled in vitro were 3–4 nm in diameter and these fine filaments were seen to be bundled together into thicker strands of varying diameters, similar to those within the cell. The thicker filament bundles were clearly distinguishable from intermediate filaments, but fine filaments in these bundles were superficially similar to the 2–5 nm filaments described as microtubule-associated proteins in other organisms. The ultrastructure of the tetrin filaments localized within the feeding organelle reveals a substantial presence of these filaments apart from microtubules. In addition, circular dichroism measurements indicate a relatively low alpha-helical content for these filaments and suggest that the tetrins may be substantially different from other fine filament proteins such as the tektins and giardins.


2021 ◽  
Author(s):  
Kellie D. Licking-Murray ◽  
Darby J. Carlson ◽  
Ryan Sowle ◽  
Kimberly A. Carlson
Keyword(s):  

1999 ◽  
Vol 266 (2) ◽  
pp. 533-537 ◽  
Author(s):  
Sultan C. Agalarov ◽  
Olga M. Selivanova ◽  
Elena N. Zheleznyakova ◽  
Ludmila A. Zheleznaya ◽  
Nicholas I. Matvienko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document