nora virus
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Tong Li ◽  
Ruobing Guan ◽  
Yuqing Wu ◽  
Su Chen ◽  
Guohui Yuan ◽  
...  

In the present study, we identified a novel, positive-sense single-stranded RNA virus in the Chinese black cutworm, Agrotis ipsilon. It has a genome length of 11,312 nucleotides, excluding the poly(A) tails, and contains five open reading frames. The ORF2 encodes the conserved domains of RNA helicase and RNA-dependent RNA polymerase, while ORF4 and 5 encode three viral proteins. Herein, the A. ipsilon virus was clustered with a Helicoverpa armigera Nora virus and was thus provisionally named “Agrotis ipsilon Nora virus” (AINV). AINV was successfully transmitted into a novel host, Spodoptera frugiperda, through injection, causing a stable infection. This found the possibility of horizontal AINV transmission among moths belonging to the same taxonomic family. Nonetheless, AINV infection was deleterious to S. frugiperda and mainly mediated by antiviral and amino acid metabolism-related pathways. Furthermore, the infection significantly increased the S. frugiperda larval period but significantly reduced its moth eclosion rate. It suggests that AINV is probably to be a parasitic virus of S. frugiperda.


2021 ◽  
pp. 167308
Author(s):  
Jared C. Nigg ◽  
Vanesa Mongelli ◽  
Hervé Blanc ◽  
Maria-Carla Saleh
Keyword(s):  

2021 ◽  
Author(s):  
Kellie D. Licking-Murray ◽  
Darby J. Carlson ◽  
Ryan Sowle ◽  
Kimberly A. Carlson
Keyword(s):  

2021 ◽  
Vol 7 (2) ◽  
pp. 216-237
Author(s):  
Makayla Schissel ◽  
◽  
Rebecca Best ◽  
Shelby Liesemeyer ◽  
Yuan-De Tan ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pasi Laurinmäki ◽  
Shabih Shakeel ◽  
Jens-Ola Ekström ◽  
Pezhman Mohammadi ◽  
Dan Hultmark ◽  
...  

AbstractNora virus, a virus of Drosophila, encapsidates one of the largest single-stranded RNA virus genomes known. Its taxonomic affinity is uncertain as it has a picornavirus-like cassette of enzymes for virus replication, but the capsid structure was at the time for genome publication unknown. By solving the structure of the virus, and through sequence comparison, we clear up this taxonomic ambiguity in the invertebrate RNA virosphere. Despite the lack of detectable similarity in the amino acid sequences, the 2.7 Å resolution cryoEM map showed Nora virus to have T = 1 symmetry with the characteristic capsid protein β-barrels found in all the viruses in the Picornavirales order. Strikingly, α-helical bundles formed from the extended C-termini of capsid protein VP4B and VP4C protrude from the capsid surface. They are similar to signalling molecule folds and implicated in virus entry. Unlike other viruses of Picornavirales, no intra-pentamer stabilizing annulus was seen, instead the intra-pentamer stability comes from the interaction of VP4C and VP4B N-termini. Finally, intertwining of the N-termini of two-fold symmetry-related VP4A capsid proteins and RNA, provides inter-pentamer stability. Based on its distinct structural elements and the genetic distance to other picorna-like viruses we propose that Nora virus, and a small group of related viruses, should have its own family within the order Picornavirales.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 491
Author(s):  
Amanda Macke ◽  
Wilfredo Lopez ◽  
Darby J. Carlson ◽  
Kimberly A. Carlson

Study of the novel RNA virus, Nora virus, which is a persistent, picorna-like virus that replicates in the gut of Drosophila melanogaster offers insight into human innate immunity and other picorna-like viruses. Nora virus infection leads to a locomotor abnormality and upregulation of two candidate target proteins, Vago and Virus-induced RNA 1 (Vir-1). These proteins are uncharacterized in response to Nora virus. We hypothesize that Nora virus is circulating in the hemolymph of Nora virus-infected D. melanogaster, allowing for migration beyond the primary site of replication in the gut. Analysis by qRT-PCR demonstrated biphasic viral load and corresponding vago and vir-1 transcription levels, suggesting transcription of vago and vir-1 occurs in response to viral infection. However, Vir-1 is also present in virus-free D. melanogaster suggesting basal expression or alternative functions. Presence of Nora virus RNA and the Viral Protein 4b (VP4b), in hemolymph of infected D. melanogaster supports the hypothesized circulation of Nora virus in the hemolymph. The study suggests that impaired locomotor function may be due to transport of Nora virus from the gut to the brain via the hemolymph.


Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Abigail Rogers ◽  
Lesley Towery ◽  
Amanda McCown ◽  
Kimberly A. Carlson

Nora virus (NV) is a picorna-like virus that contains a positive-sense, single-stranded RNA genome. The virus infects Drosophila melanogaster with no known characterized phenotype. In this study, geotaxis assays and longevity analyses were used to determine if Nora virus infection affects D. melanogaster’s locomotor ability. In addition, Drosophila C virus (DCV), a well-characterized D. melanogaster virus, was used as a positive control, as it has previously shown a locomotor defect in infected flies. Stocks infected with NV (NV+) and DCV (DCV+) and virus-free (NV-/DCV-) stocks were established. Over a 3-year period, approximately 2,500 virgin female flies were tested for geotaxis and longevity using Kaplan–Meier analyses, as well as the Cox Proportional Hazards regression for survivorship. There was a significant decrease in the geotaxis when the D. melanogaster flies were infected with Nora virus compared to uninfected controls, but no difference was found between DCV+ and NV+ trials. There were not significant differences in longevity between the three groups. This is the first time that a phenotype has been recorded in association with Nora virus infection. Overall, the data demonstrate that geotaxis dysfunction may be a phenotypic hallmark of Nora virus infection.


2018 ◽  
Vol 4 (1) ◽  
pp. 123-139 ◽  
Author(s):  
Wilfredo Lopez ◽  
◽  
Alexis M. Page ◽  
Darby J. Carlson ◽  
Brad L. Ericson ◽  
...  

2016 ◽  
Vol 223 ◽  
pp. 20-27 ◽  
Author(s):  
Sajna Anand Sadanandan ◽  
Jens-Ola Ekström ◽  
Venkateswara Rao Jonna ◽  
Anders Hofer ◽  
Dan Hultmark
Keyword(s):  

Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Brad L. Ericson ◽  
Darby J. Carlson ◽  
Kimberly A. Carlson

Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infectedDrosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera.ORF3,ORF4a,ORF4b, andORF4cwere individually cloned and expressed inE. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infectedD. melanogasterlysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.


Sign in / Sign up

Export Citation Format

Share Document