Local asymptotic stability for dissipative wave systems

1998 ◽  
Vol 104 (1) ◽  
pp. 29-50 ◽  
Author(s):  
Patrizia Pucci ◽  
James Serrin
2019 ◽  
Vol 12 (4) ◽  
pp. 1533-1552
Author(s):  
Kambire Famane ◽  
Gouba Elisée ◽  
Tao Sadou ◽  
Blaise Some

In this paper, we have formulated a new deterministic model to describe the dynamics of the spread of chikunguya between humans and mosquitoes populations. This model takes into account the variation in mortality of humans and mosquitoes due to other causes than chikungunya disease, the decay of acquired immunity and the immune sytem boosting. From the analysis, itappears that the model is well posed from the mathematical and epidemiological standpoint. The existence of a single disease free equilibrium has been proved. An explicit formula, depending on the parameters of the model, has been obtained for the basic reproduction number R0 which is used in epidemiology. The local asymptotic stability of the disease free equilibrium has been proved. The numerical simulation of the model has confirmed the local asymptotic stability of the diseasefree equilbrium and the existence of endmic equilibrium. The varying effects of the immunity parameters has been analyzed numerically in order to provide better conditions for reducing the transmission of the disease.


2014 ◽  
Vol 07 (04) ◽  
pp. 1450045 ◽  
Author(s):  
Qinglai Dong ◽  
Wanbiao Ma

In this paper, we consider a simple chemostat model with inhibitory exponential substrate uptake and a time delay. A detailed qualitative analysis about existence and boundedness of its solutions and the local asymptotic stability of its equilibria are carried out. Using Lyapunov–LaSalle invariance principle, we show that the washout equilibrium is global asymptotic stability for any time delay. Using the fluctuation lemma, the sufficient condition of the global asymptotic stability of the positive equilibrium [Formula: see text] is obtained. Numerical simulations are also performed to illustrate the results.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao-Ping Chen ◽  
Hao Liu

The n-species Lotka-Volterra system with discrete delays is considered. The local asymptotic stability of positive equilibrium is investigated based on a contour integral method. The main purpose of this paper is to propose a new and general algorithm to study the local asymptotic stability of the positive equilibrium for then-dimensional Lotka-Volterra system. Some numerical experiments are carried out to show the effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-22
Author(s):  
M. R. S. Kulenović ◽  
S. Moranjkić ◽  
M. Nurkanović ◽  
Z. Nurkanović

We investigate the global asymptotic stability of the following second order rational difference equation of the form xn+1=Bxnxn-1+F/bxnxn-1+cxn-12,  n=0,1,…, where the parameters B, F, b, and c and initial conditions x-1 and x0 are positive real numbers. The map associated with this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability. Also, we show that considered equation exhibits the Naimark-Sacker bifurcation resulting in the existence of the locally stable periodic solution of unknown period.


2018 ◽  
Vol 41 (3) ◽  
pp. 729-736 ◽  
Author(s):  
Farideh Cheraghi-Shami ◽  
Ali-Akbar Gharaveisi ◽  
Malihe M Farsangi ◽  
Mohsen Mohammadian

In this paper, a Lyapunov-based method is provided to study the local asymptotic stability of planar piecewise affine systems with continuous vector fields. For such systems, the state space is supposed to be partitioned into several bounded convex polytopes. A piecewise affine function, not necessarily continuous on the boundaries of the polytopic partitions, is proposed as a candidate Lyapunov function. Then, sufficient conditions for the local asymptotic stability of the system, including a monotonicity condition at switching instants, are formulated as a linear programming problem. In addition, when the problem does not have a feasible solution based on the original partitions of the system, a new partition refinement algorithm is presented. In this way, more flexibility can be provided in searching for the Lyapunov function. Owing to relaxation of the continuity condition imposed on the system boundaries, the proposed method reaches to less conservative results, compared with the previous methods based on continuous piecewise affine Lyapunov functions. Simulation results illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document