Effect of purified Xuefu Capsule on endothelin, nitric oxide synthetase gene expression of vascular wall in atherosclerotic rabbits

1998 ◽  
Vol 4 (2) ◽  
pp. 123-125
Author(s):  
Dazhuo Shi ◽  
Keji Chen ◽  
Qunhao Zhang ◽  
Pei Zhong ◽  
Yingbao Zhu ◽  
...  
Author(s):  
Makoto Kinoshita ◽  
Florian Freudenberg ◽  
Esin Candemir ◽  
Sarah Kittel-Schneider

2017 ◽  
Vol 68 (10) ◽  
pp. 2237-2242
Author(s):  
Germaine Savoiu Balint ◽  
Mihaiela Andoni ◽  
Ramona Amina Popovici ◽  
Laura Cristina Rusu ◽  
Ioana Citu ◽  
...  

Arterial endothelium produces a large ramge of active factors which are indispensable for modulation of vasomotor tone and maintenance of vascular wall integrity. From these factors, nitric oxide (NO), wich is released by the endothelial cells as a response to acetylcholine or adenosine action on specific receptors, plays an important role.NO is the result of oxidation process of L-arginine into L-citrulline, under the action of endothelial nitric oxide synthase (NOSe), wich is activated by intracelluar Ca2+ - calmodulin complex . Our study, performed in isolated organ bath, analyzed vascular reactivity of 12 guinea pigs� thoracic aorta rings. After phenylephrine -PHE 10-5 mol/L precontraction, the dose-effect curves for acetylcoline � ACH, adenosine 5� phosphate - 5�ADP and sodium nitroprusside � SNP were determined, before and after incubation of preparation, for 1 hour, with 5% hydrosoluble cigarettes smoke extract (CSE). Statistic analysis, performed with the use of t pair test and ANOVA parametric test, showed that incubation of vascular preparation with 5% CSE has increased the contractile response to PHE 10-5 mol/L (p[0.05), has reduced the endothelium-dependent relaxing response to ATP 10-5 mol/L (p[0.001) and 5�ADP 10-5 molo/L (p[0.001), but has not significantly modified the endothelium-independent relaxing response to SNP 10-5 mol/L (p=0.05). As a conclusion, vascular rings incubation with 5% CSE induced a decrease of endothelium NO synthesis under the action of AXH and 5�ADP, but did not change the smooth muscle fiber respomse in the presence of NO released by SNP.


2004 ◽  
Vol 287 (4) ◽  
pp. L764-L773 ◽  
Author(s):  
Loretta Sparkman ◽  
Vijayakumar Boggaram

Interleukin (IL)-8, a C-X-C chemokine, is a potent chemoattractant and an activator for neutrophils, T cells, and other immune cells. The airway and respiratory epithelia play important roles in the initiation and modulation of inflammatory responses via production of cytokines and surfactant. The association between elevated levels of nitric oxide (NO) and IL-8 in acute lung injury associated with sepsis, acute respiratory distress syndrome, respiratory syncytial virus infection in infants, and other inflammatory diseases suggested that NO may play important roles in the control of IL-8 gene expression in the lung. We investigated the role of NO in the control of IL-8 gene expression in H441 lung epithelial cells. We found that a variety of NO donors significantly induced IL-8 mRNA levels, and the increase in IL-8 mRNA was associated with an increase in IL-8 protein. NO induction of IL-8 mRNA was due to increases in IL-8 gene transcription and mRNA stability. NO induction of IL-8 mRNA levels was not inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and KT-5823, inhibitors of soluble guanylate cyclase and protein kinase G, respectively, and 8-bromo-cGMP did not increase IL-8 mRNA levels. This indicated that NO induces IL-8 mRNA levels independently of changes in the intracellular cGMP levels. NO induction of IL-8 mRNA was significantly reduced by inhibitors of extracellular regulated kinase and protein kinase C. IL-8 induction by NO was also reduced by hydroxyl radical scavengers such as dimethyl sulfoxide and dimethylthiourea, indicating the involvement of hydroxyl radicals in the induction process. NO induction of IL-8 gene expression could be a significant contributing factor in the initiation and induction of inflammatory response in the respiratory epithelium.


Sign in / Sign up

Export Citation Format

Share Document