Faculty Opinions recommendation of Endogenous morphine/nitric oxide-coupled regulation of cellular physiology and gene expression: implications for cancer biology.

Author(s):  
Marc De Kock ◽  
Patrice Forget
2008 ◽  
Vol 18 (3) ◽  
pp. 199-210 ◽  
Author(s):  
George B. Stefano ◽  
Richard M. Kream ◽  
Kirk J. Mantione ◽  
Melinda Sheehan ◽  
Patrick Cadet ◽  
...  

Author(s):  
Makoto Kinoshita ◽  
Florian Freudenberg ◽  
Esin Candemir ◽  
Sarah Kittel-Schneider

2020 ◽  
Vol 27 (20) ◽  
pp. 3330-3345
Author(s):  
Ana G. Rodríguez-Hernández ◽  
Rafael Vazquez-Duhalt ◽  
Alejandro Huerta-Saquero

Nanomaterials have become part of our daily lives, particularly nanoparticles contained in food, water, cosmetics, additives and textiles. Nanoparticles interact with organisms at the cellular level. The cell membrane is the first protective barrier against the potential toxic effect of nanoparticles. This first contact, including the interaction between the cell membranes -and associated proteins- and the nanoparticles is critically reviewed here. Nanoparticles, depending on their toxicity, can cause cellular physiology alterations, such as a disruption in cell signaling or changes in gene expression and they can trigger immune responses and even apoptosis. Additionally, the fundamental thermodynamics behind the nanoparticle-membrane and nanoparticle-proteins-membrane interactions are discussed. The analysis is intended to increase our insight into the mechanisms involved in these interactions. Finally, consequences are reviewed and discussed.


2004 ◽  
Vol 287 (4) ◽  
pp. L764-L773 ◽  
Author(s):  
Loretta Sparkman ◽  
Vijayakumar Boggaram

Interleukin (IL)-8, a C-X-C chemokine, is a potent chemoattractant and an activator for neutrophils, T cells, and other immune cells. The airway and respiratory epithelia play important roles in the initiation and modulation of inflammatory responses via production of cytokines and surfactant. The association between elevated levels of nitric oxide (NO) and IL-8 in acute lung injury associated with sepsis, acute respiratory distress syndrome, respiratory syncytial virus infection in infants, and other inflammatory diseases suggested that NO may play important roles in the control of IL-8 gene expression in the lung. We investigated the role of NO in the control of IL-8 gene expression in H441 lung epithelial cells. We found that a variety of NO donors significantly induced IL-8 mRNA levels, and the increase in IL-8 mRNA was associated with an increase in IL-8 protein. NO induction of IL-8 mRNA was due to increases in IL-8 gene transcription and mRNA stability. NO induction of IL-8 mRNA levels was not inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and KT-5823, inhibitors of soluble guanylate cyclase and protein kinase G, respectively, and 8-bromo-cGMP did not increase IL-8 mRNA levels. This indicated that NO induces IL-8 mRNA levels independently of changes in the intracellular cGMP levels. NO induction of IL-8 mRNA was significantly reduced by inhibitors of extracellular regulated kinase and protein kinase C. IL-8 induction by NO was also reduced by hydroxyl radical scavengers such as dimethyl sulfoxide and dimethylthiourea, indicating the involvement of hydroxyl radicals in the induction process. NO induction of IL-8 gene expression could be a significant contributing factor in the initiation and induction of inflammatory response in the respiratory epithelium.


2002 ◽  
Vol 14 (4) ◽  
pp. 316-316
Author(s):  
AL Burnett ◽  
C M Gonzalez ◽  
R E Brannigan ◽  
T Bervig ◽  
D Zelner ◽  
...  

Metabolism ◽  
2001 ◽  
Vol 50 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Dae Ho Lee ◽  
JongUn Lee ◽  
Dae Gill Kang ◽  
Yun Woong Paek ◽  
Dong Jin Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document