Effects of heavy metals on the nitrogen metabolism of the aquatic mossFontinalis antipyretica L. ex Hedw

2002 ◽  
Vol 9 (6) ◽  
pp. 417-421 ◽  
Author(s):  
Kristin Sutter ◽  
Klaus Jung ◽  
Gerd-Joachim Krauss

Author(s):  
Grażyna Kłobus ◽  
Marek Burzyński ◽  
Józef Buczek


2009 ◽  
Vol 26 (5) ◽  
pp. 811-816 ◽  
Author(s):  
N. K. Arora ◽  
Ekta Khare ◽  
S. Singh ◽  
D. K. Maheshwari


2021 ◽  
Author(s):  
Vitor Nascimento ◽  
Glauco Nogueira ◽  
Gabriel Monteiro ◽  
Waldemar Júnior ◽  
Joze Melissa Nunes de Freitas ◽  
...  

As an essential element, Nitrogen is needed in large quantities for being an important component of cellular constituents and for plant metabolism, and its deficiency is one of the most common limitations for plant development. The study of the toxic effects of metal in plants involves a complex system of reactions that can be better determined once having a large attention of the different backgrounds of occurence to determinate how to proceed. The objective of this review is to add scientific knowledge, addressing the main functionalities and characteristics of this relation heavy metals – nitrogen metabolism in plant. Increasing industrialization and urbanization had anthropogenic contribution of heavy metals in biosphere and had largest availability in ecosystems. This toxicity in plants varies with plant species, specific metal, concentration, soil composition, as many heavy metals are considered to be essential for plant growth. Were provided data and reviews regarding the effect of heavy metals on nitrogen metabolism of plants and the responses of plants and the cross-talk of heavy metals and various stressors factors. Is clear to understand the relation between metals amount and the benefit or harm caused on plants, determining then, which mechanism should be activated to protect your physiological system.



2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Punesh Sangwan ◽  
Vinod Kumar ◽  
U. N. Joshi

Heavy metals are the intrinsic component of the environment with both essential and nonessential types. Their excessive levels pose a threat to plant growth and yield. Also, some heavy metals are toxic to plants even at very low concentrations. The present investigation (a pot experiment) was conducted to determine the affects of varying chromium(VI) levels (0.0, 0.5, 1.0, 2.0, and 4.0 mg chromium(VI) kg−1 soil in the form of potassium dichromate) on the key enzymes of nitrogen metabolism in clusterbean. Chromium treatment adversely affect nitrogenase, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate dehydrogenase in various plant organs at different growth stages as specific enzyme activity of these enzymes decreased with an increase in chromium(VI) levels from 0 to 2.0 mg chromium(VI) kg−1 soil and 4.0 mg chromium(VI) kg−1 soil was found to be lethal to clusterbean plants. In general, the enzyme activity increased with advancement of growth to reach maximum at flowering stage and thereafter decreased at grain filling stage.



Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.



1993 ◽  
Vol 88 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Udo W. Stephan ◽  
Gunter Scholz
Keyword(s):  


2011 ◽  
Author(s):  
Parker Woody ◽  
Michael Zhang ◽  
Craig Pulsipher ◽  
Dawson Hedges ◽  
Bruce Brown




Sign in / Sign up

Export Citation Format

Share Document