Thermal conductivity of amorphous iron alloys at low temperatures

1982 ◽  
Vol 53 (3-4) ◽  
pp. 401-409 ◽  
Author(s):  
G. Pompe ◽  
M. Gaafar ◽  
M. Falz ◽  
P. Büttner
2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


1991 ◽  
Vol 113 (4) ◽  
pp. 423-429 ◽  
Author(s):  
Xuemei Bai ◽  
David E. Pegg

The self-heated thermistor technique was used to measure the thermal conductivity and thermal diffusivity of biomaterials at low temperatures. Thermal standards were selected to calibrate the system at temperatures from −10°C to −70°C. The thermal probes were constructed with a convection barrier which eliminates convection inside liquid samples of low viscosity, without affecting the conductivity and diffusivity results. Using this technique, the thermal conductivity and diffusivity of two organ perfusates (HP5 and HP5 + 2M glycerol), one kidney phantom (a low ionic strength gel), as well as rabbit kidney cortex have been measured from −10°C to −70°C.


Cryogenics ◽  
1981 ◽  
Vol 21 (12) ◽  
pp. 741-745 ◽  
Author(s):  
Yu.F. Bychkov ◽  
R. Herzog ◽  
I.S. Khukhareva

1972 ◽  
Vol 50 (12) ◽  
pp. 1386-1401 ◽  
Author(s):  
J. G. Cook ◽  
M. P. Van der Meer ◽  
M. J. Laubitz

We present data on the electrical and thermal resistivities and the thermopower of three pure Na specimens from 40 to 360 K. The measurements were made using a guarded longitudinal heat flow apparatus that had previously been calibrated with Au and Al. The specimens were placed in a vacuum environment using no solid inert liner.The electrical resistivity data indicate ΘR = 194 K. The thermal conductivity data show a 4% minimum near 70 K and an ice point value of 1.420 W/cm K. The reduced Lorenz function L/L0 agrees with published data at low temperatures but above 300 K levels off at approximately 0.91. On the basis of published data for liquid Na, L/L0 does not change by more than 3% at the melting point.The minimum in the thermal conductivity and a part of the high temperature deviations of L from L0 are tentatively ascribed to inelastic electron–phonon collisions having a characteristic temperature near that of longitudinal phonons. The possibility that electron–electron collisions further depress L at high temperatures is critically examined.


Sign in / Sign up

Export Citation Format

Share Document