scholarly journals Overexpression of Select T Cell Receptor Vβ Gene Families within CD4+ and CD8+ T Cell Subsets of Myasthenia Gravis Patients: A Role for Superantigen(s)?

1996 ◽  
Vol 2 (4) ◽  
pp. 452-459 ◽  
Author(s):  
Dulceaydee Gigliotti ◽  
Ann-Kari Lefvert ◽  
Mahmood Jeddi-Tehrani ◽  
Semih Esin ◽  
Vida Hodara ◽  
...  
1993 ◽  
Vol 6 (5) ◽  
pp. 621-637 ◽  
Author(s):  
Alessandra Sottini ◽  
Luisa Imberti ◽  
Alessandra Bettinardi ◽  
Cinzia Mazza ◽  
Roberto Gorla ◽  
...  

2005 ◽  
Vol 12 (4) ◽  
pp. 477-483 ◽  
Author(s):  
Sanjit Fernandes ◽  
Surendra Chavan ◽  
Vivek Chitnis ◽  
Nina Kohn ◽  
Savita Pahwa

ABSTRACTRationale: evaluation of the T-cell receptor (TCR) Vβ-chain repertoire by PCR-based CDR3 length analysis allows fine resolution of the usage of the TCR Vβ repertoire and is a sensitive tool to monitor changes in the T-cell compartment. A multiplex PCR method employing 24 labeled upstream Vβ primers instead of the conventionally labeled downstream Cβ primer is described. Method: RNA was isolated from purified CD4 and CD8 T-cell subsets from umbilical cord blood and clinical samples using TRI reagent followed by reverse transcription using a Cβ primer and an Omniscript RT kit. The 24 Vβ primers were multiplexed based on compatibility and product sizes into seven reactions. cDNA was amplified using 24 Vβ primers (labeled with tetrachloro-6-cardoxyfluorescein, 6-carboxyfluorescein, and hexachloro-6-carboxyfluorescein), an unlabeled Cβ primer, and Taqgold polymerase. The fluorescent PCR products were resolved on an automated DNA sequencer and analyzed using the Genotyper 2.1 software. Results: Vβ spectratypes of excellent resolution were obtained with RNA amounts of 250 ng using the labeled Vβ primers. The resolution was superior to that obtained with the labeled Cβ primer assay. Also the numbers of PCRs were reduced to 7 from the 12 required in the Cβ labeling method, and the sample processing time was reduced by half. Conclusion: The method described for T-cell receptor Vβ-chain repertoire analysis eliminates tedious dilutions and results in superior resolution with small amounts of RNA. The fast throughput makes this method suitable for automation and offers the feasibility to perform TCR Vβ repertoire analyses in clinical trials.


Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1776-1780 ◽  
Author(s):  
CH Janson ◽  
J Grunewald ◽  
A Osterborg ◽  
H DerSimonian ◽  
MB Brenner ◽  
...  

We have examined alpha/beta V gene segment usage of peripheral blood CD4+ and CD8+ T cells, respectively, from patients with multiple myeloma and monoclonal gammopathy of undetermined significance, by using T cell receptor (TCR) for antigen monoclonal antibodies (MoAbs). In 7 of 16 patients we found an increase in the usage of various TCR V gene segments. The expansion was confined to either the CD4+ or the CD8+ T-cell subset, except for one patient where an abnormal pattern was observed both within the CD4+ and CD8+ T-cell subsets. In one patient 47%, and in another patient 30% of the CD8+ lymphocytes reacted with alpha V12.1 and beta V6.7 antibodies, respectively. In two other patients 29% and 40% of the CD4+ lymphocytes reacted with beta V6.7 and beta V8.1 antibodies, respectively. We conclude that T cells with a predominant V gene usage is a frequent feature in patients with abnormal clonal B cells of malignant or benign types. T- and B-cell populations are normally clonally linked in regulatory circuits. An abnormal proliferation of B cells might therefore induce, or be regulated by, an expansion of clonal T cells, as suggested by the present results.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3085-3085
Author(s):  
Mark C. Lanasa ◽  
Marc C. Levesque ◽  
Sallie D. Allgood ◽  
Jon P. Gockerman ◽  
Karen Bond ◽  
...  

Abstract Background: Although most malignancies are associated with decreased numbers of circulating T cells, in CLL they are elevated 2 to 4 times normal. Rather than promoting an anti-tumor response, this increased population of T cells may contribute to a tumor microenvironment that fosters progression of the malignant clone. Immunocompetent individuals show a wide repertoire of antigen specificity in both CD4+ and CD8+ T cells, but the T cell repertoire is significantly restricted in CLL. This restriction of the T cell repertoire may be an important cause of infectious morbidity in patients with CLL. To better understand these T cell abnormalities, we enumerated T cell subsets and determined T cell receptor diversity in 18 untreated patients with CLL. Methods: T cell subsets were enumerated from peripheral blood using highly sensitive 6-color flow cytometry. The T cell repertoire was determined for 23 T cell receptor variable β chain families (TCRvβ) in purified CD4+ and CD8+ T cells. These T cell subsets were considered separately because differential restriction of the CD4+ and CD8+ subsets has been reported previously. A PCR-based spectratype assay was used to analyze the length distribution of the TCR complementarity-determining region 3 (CDR3). A limitation of prior reports using spectratype assays was that adequately complex statistical models did not exist to simultaneously analyze the highly diverse vβ families. We addressed this limitation by using a recently-developed statistical method for spectratype analysis (Bioinformatics. 21:3394–400). Briefly, for each vβ family, the divergence from an expected reference distribution was calculated. A divergence coefficient was determined for each vβ family, and the mean divergence of all 23 vβ families was calculated. This allowed for statistical comparisons among individual patients and specific vβ families. To our knowledge, we are the first group to apply this powerful methodology to the analysis of T cell repertoires in patients with CLL. Results: We found both the CD4+ and CD8+ subsets to be expanded (mean #/μL ± SD: 1134 ± 646 and 768 ± 716, respectively; reference normal CD4+ range 401–1532, CD8+ 152–838). The absolute number of CD4+ and CD8+ T cells was greater in patients with higher absolute CLL lymphocyte counts (p = 0.018, r2 = 0.30, and p = 0.23, r2 = 0.09, respectively, linear regression). The CD4:CD8 ratio was lower in IgVH unmutated subjects (mutated 2.6, umutated 1.7, p = 0.09, two-tailed t-test assuming unequal variances). Though prior reports have disagreed on whether CD4+ or CD8+ subsets show greater restriction of clonality, we observed striking clonal restriction of CD8+ but not CD4+ T cells (p < 1×10−7, 2 sided t-test assuming unequal variances). There was a trend toward greater restriction of the CD8+ subset among patients with IgVH unmutated and Zap70+ CLL, but there was no correlation with lymphocyte doubling time. Conclusions: In this cohort of 18 untreated patients with CLL, there was a greater proportional increase compared to reference standards of CD8+ versus CD4+ T cells. However, the increase in CD4+, but not CD8+, T cell numbers was significantly correlated to total CLL lymphocyte count. This observation suggests that expansion of the CD4+ T cell pool observed in CLL is proportional to leukemic burden. The restriction of TCRvβ was limited to CD8+ T cells and that this effect was independent of the size of the abnormal clone. Taken together, these findings suggest different mechanisms of dysregulation of CD4+ and CD8+ T cell subsets in CLL.


1996 ◽  
Vol 39 ◽  
pp. 394-394
Author(s):  
Susan F Massengill ◽  
John W Sleasman ◽  
Maureen M Goodenow

Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1776-1780 ◽  
Author(s):  
CH Janson ◽  
J Grunewald ◽  
A Osterborg ◽  
H DerSimonian ◽  
MB Brenner ◽  
...  

Abstract We have examined alpha/beta V gene segment usage of peripheral blood CD4+ and CD8+ T cells, respectively, from patients with multiple myeloma and monoclonal gammopathy of undetermined significance, by using T cell receptor (TCR) for antigen monoclonal antibodies (MoAbs). In 7 of 16 patients we found an increase in the usage of various TCR V gene segments. The expansion was confined to either the CD4+ or the CD8+ T-cell subset, except for one patient where an abnormal pattern was observed both within the CD4+ and CD8+ T-cell subsets. In one patient 47%, and in another patient 30% of the CD8+ lymphocytes reacted with alpha V12.1 and beta V6.7 antibodies, respectively. In two other patients 29% and 40% of the CD4+ lymphocytes reacted with beta V6.7 and beta V8.1 antibodies, respectively. We conclude that T cells with a predominant V gene usage is a frequent feature in patients with abnormal clonal B cells of malignant or benign types. T- and B-cell populations are normally clonally linked in regulatory circuits. An abnormal proliferation of B cells might therefore induce, or be regulated by, an expansion of clonal T cells, as suggested by the present results.


1991 ◽  
Vol 134 (2) ◽  
pp. 414-426 ◽  
Author(s):  
Isabella Screpanti ◽  
Daniela Meco ◽  
Stefania Morrone ◽  
Alberto Gulino ◽  
Bonnie J. Mathieson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document