Adsorption and zeta potential studies relevant to hematite ore reverse froth flotation

2012 ◽  
Vol 29 (3) ◽  
pp. 148-155
Author(s):  
Wentian Jiang ◽  
Chenglin Sun ◽  
Xu Yang
Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1109
Author(s):  
Manar Derhy ◽  
Yassine Taha ◽  
Rachid Hakkou ◽  
Mostafa Benzaazoua

The way to successfully upgrade a phosphate ore is based on the full understanding of its mineralogy, minerals surface properties, minerals distribution and liberation. The conception of a treatment process consists of choosing the proper operations with an adequate succession depending on the ore properties. Usually, froth flotation takes place in phosphate enrichment processes, since it is cheap, convenient, and well developed. Nevertheless, it is a complex technique as it depends on the mineral’s superficial properties in aqueous solutions. Aspects such as wettability, surface charge, zeta potential, and the solubility of minerals play a basic role in defining the flotation conditions. These aspects range from the reagents type and dosage to the pH of the pulp. Other variables namely particles size, froth stability, and bubbles size play critical roles during the treatment, as well. The overall aim is to control the selectivity and recovery of the process. The following review is an attempt to add to previous works gathering phosphate froth flotation data. In that sense, the relevant parameters of phosphate ores flotation are discussed while focusing on apatite, calcite, dolomite, and quartz as main constituent minerals.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qingzhu Zheng ◽  
Yunlou Qian ◽  
Dan Zou ◽  
Zhen Wang ◽  
Yang Bai ◽  
...  

Froth flotation of fine minerals has always been an important research direction in terms of theory and practice. In this paper, the effect and mechanism of Fe3+ on improving surface hydrophobicity and flotation of fine monazite using sodium octyl hydroxamate (SOH) as a collector were investigated through a series of laboratory tests and detection measurements including microflotation, fluorescence spectrum, zeta potential, and X-ray photoelectron spectroscopy (XPS). Flotation tests have shown that fine monazite particles (−26 + 15 μm) cannot be floated well with the SOH collector compared to the coarse fraction (−74 + 38 μm). However, adding a small amount of Fe3+ to the pulp before SOH can significantly improve the flotation of fine monazite. This is because the addition of Fe3+ promotes the adsorption of SOH and greatly improves the hydrophobicity of the monazite surface. This can result in the formation of a more uniform and dense hydrophobic adsorption layer, as shown by the fluorescence spectrum and zeta potential results. From the XPS results, Fe3+ reacts with surface O atoms on the surface of monazite to form a monazite–Osurf–Fe group that acts as a new additional active site for SOH adsorption. A schematic model was also proposed to explain the mechanism of Fe3+ for improving surface hydrophobicity and flotation of fine monazite using octyl hydroxamate as a collector. The innovative point of this study is using a simple reagent scheme to float fine mineral particles rather than traditional complex processes.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 354 ◽  
Author(s):  
Darius Wonyen ◽  
Varney Kromah ◽  
Borbor Gibson ◽  
Solomon Nah ◽  
Saeed Chelgani

It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation.


2021 ◽  
pp. 3-8
Author(s):  
G. I. Gazaleeva ◽  
L. N. Nazarenko ◽  
E. G. Dmitrieva

This article is a continuation of the authors’ research on improving the flotation process for fine tin products using zeta potential measurements on particle surfaces. The aim of the research is to establish the possibility of using certain reagents to intensify the flotation of fine cassiterite particles and to identify the mechanism behind the effect produced by the reagents on the surface of slurry particles in cassiterite flotation using zeta potential measurements. The results of experiments to select the best collector are presented, with salicylhydroxamic acid identified as the best option. Sodium hexametaphosphate pretreatment of a flotation slurry consisting of fine particles enables a more efficient cassiterite flotation, which is explained by the negative value of the z-potential for the particle surface. The use of sodium hexametaphosphate improves the yield by up to 3 %, with the mass fraction of tin growing from 1.2 to 1.75 %, and the recovery improving from 40 to 75 %. The results of z-potential measurements for the particle surface in the process of flotation indicate that its positive values are not always required and that the combined action of oxalic and sulfuric acids with salicylhydroxamic acid at a z-potential of –0.7 mV renders the maximum tin grade of 2.22 % in the froth flotation product. Gravity treatment of the flotation concentrate on concentration tables allows obtaining conditioned concentrates with the mass fractions of tin of 23.4 and 30.6 %. Finding the extremum of the z-potential for the particle surface during the flotation of tin minerals allows predicting the concentration results.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 313 ◽  
Author(s):  
Jianjun Wang ◽  
Zihan Zhou ◽  
Yuesheng Gao ◽  
Wei Sun ◽  
Yuehua Hu ◽  
...  

Fluorite (CaF2), as an important strategic mineral source, is usually separated from calcite by the common froth flotation method, but this separation is still not selective enough. The development of a selective collector and/or depressant is the key to achieving high selective separation. 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP or H4L) is widely used as an environmentally friendly water treatment reagent due to its low cost and excellent anti-scaling performance in an aqueous solution. In this study, a novel reagent scheme was developed using HEDP as a fluorite depressant and sodium oleate (NaOL) as a calcite collector for the first time. When 3 × 10−5 mol/L of HEDP and 6 × 10−5 mol/L of NaOL were used at pH 6, the optimal selective separation for single minerals and mixed binary minerals was obtained. Zeta potential measurements indicated that HEDP possessed a stronger adsorption on fluorite than calcite, while NaOL did the opposite. This novel reagent scheme is of low cost, uses a small dosage, and is friendly to the environment, which makes it a promising reagent scheme for fluorite flotation in industrial application.


2015 ◽  
Vol 140 ◽  
pp. 50-57 ◽  
Author(s):  
Arturo Bueno-Tokunaga ◽  
Roberto Pérez-Garibay ◽  
Diego Martínez-Carrillo

TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


Sign in / Sign up

Export Citation Format

Share Document