Precision Low Earth Orbit Determination Using Atmospheric Density Calibration

1998 ◽  
Vol 46 (4) ◽  
pp. 395-409 ◽  
Author(s):  
F. A. Marcos ◽  
M. J. Rendra ◽  
J. M. Griffin ◽  
J. N. Bass ◽  
D. R. Larson ◽  
...  
Space Weather ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 1806-1816 ◽  
Author(s):  
S. Bruinsma ◽  
E. Sutton ◽  
S. C. Solomon ◽  
T. Fuller-Rowell ◽  
M. Fedrizzi

2020 ◽  
Vol 66 (7) ◽  
pp. 1700-1712
Author(s):  
Chongchong Zhou ◽  
Shiming Zhong ◽  
Bibo Peng ◽  
Jikun Ou ◽  
Jie Zhang ◽  
...  

2012 ◽  
Vol 62 (1) ◽  
pp. 10-22 ◽  
Author(s):  
A. Milani ◽  
D. Farnocchia ◽  
L. Dimare ◽  
A. Rossi ◽  
F. Bernardi

2018 ◽  
Vol 61 (11) ◽  
pp. 2740-2760 ◽  
Author(s):  
Jean-Sébastien Ardaens ◽  
Gabriella Gaias

Author(s):  
Eun-Hyouek Kim ◽  
Dong-Wook Koh ◽  
Young-Suk Chung ◽  
Sung-Baek Park ◽  
Hyeun-Pil Jin ◽  
...  

2021 ◽  
Author(s):  
Xinyuan Mao ◽  
Daniel Arnold ◽  
Cyril Kobel ◽  
Arturo Villiger ◽  
Adrian Jäggi

<p>A classical reduced-dynamic GPS-based Precise Orbit Determination (POD) strategy for Low Earth Orbit (LEO) satellites is often based on a limited explicit modelling of satellite dynamics and modelling deficiencies are compensated by numerous empirical parameters. With better gravitational models and the advances in satellite surface force modeling, uncertainties in the satellite dynamics are significantly reduced. Furthermore, single-receiver ambiguity resolution allows for more robust POD as well. Therefore, a dynamic POD strategy using  significantly fewer estimated empirical parameters can be implemented to generate dynamic orbits, which allow for force modeling sensitivity analyses and evaluating potential errors in the adopted GPS antenna reference points or phase center offsets, etc.</p><p> </p><p>This presentation outlines the recent dynamic POD methodology developments at the Astronomical Institute of the University of Bern (AIUB) and investigates the POD performances for a few dedicated space geodesy satellite missions (Swarm, GRACE-FO, Sentinel-1, Sentinel-2, Sentinel-3 and Jason-3) that are operated at altitudes ranging from 430 to 1350 km. The focuses will be on satellite gravitational and non-gravitational force modeling, satellite dynamics parametrization, and orbit validations for different types of satellites. Results reveal that the dynamic POD strategy is flexible and robust to generate high-quality orbits for those satellites, showing reliable agreements with the independent ambiguity-fixed kinematic orbits and the external Satellite Laser Ranging (SLR) measurements.</p>


2021 ◽  
Vol 13 (21) ◽  
pp. 4487
Author(s):  
Bin Yi ◽  
Defeng Gu ◽  
Kai Shao ◽  
Bing Ju ◽  
Houzhe Zhang ◽  
...  

TH-2 is China’s first short-range satellite formation system used to realize interferometric synthetic aperture radar (InSAR) technology. In order to achieve the mission goal of InSAR processing, the relative orbit must be determined with high accuracy. In this study, the precise relative orbit determination (PROD) for TH-2 based on global positioning system (GPS), second-generation BeiDou navagation satellite system (BDS2), and GPS + BDS2 observations was performed. First, the performance of onboard GPS and BDS2 measurements were assessed by analyzing the available data, code multipath errors and noise levels of carrier phase observations. The differences between the National University of Defense Technology (NDT) and the Xi’an Research Institute of Surveying and Mapping (CHS) baseline solutions exhibited an RMS of 1.48 mm outside maneuver periods. The GPS-based orbit was used as a reference orbit to evaluate the BDS2-based orbit and the GPS + BDS2-based orbit. It is the first time BDS2 has been applied to the PROD of low Earth orbit (LEO) satellite formation. The results showed that the root mean square (RMS) of difference between the PROD results using GPS and BDS2 measurements in 3D components was 2.89 mm in the Asia-Pacific region. We assigned different weights to geostationary Earth orbit (GEO) satellites to illustrate the impact of GEO satellites on PROD, and the accuracy of PROD was improved to 7.08 mm with the GEO weighting strategy. Finally, relative orbits were derived from the combined GPS and BDS2 data. When BDS2 was added on the basis of GPS, the average number of visible navigation satellites from TH-2A and TH-2B improved from 7.5 to 9.5. The RMS of the difference between the GPS + BDS2-based orbit and the GPS-based orbit was about 1.2 mm in 3D. The overlap comparison results showed that the combined orbit consistencies were below 1 mm in the radial (R), along-track (T), and cross-track (N) directions. Furthermore, when BDS2 co-worked with GPS, the average of the ambiguity dilution of precision (ADOP) reduced from 0.160 cycle to 0.153 cycle, which was about a 4.4% reduction. The experimental results indicate that millimeter-level PROD results for TH-2 satellite formation can be obtained by using onboard GPS and BDS2 observations, and multi-GNSS can further improve the accuracy and reliability of PROD.


Sign in / Sign up

Export Citation Format

Share Document