scholarly journals Precise Relative Orbit Determination for Chinese TH-2 Satellite Formation Using Onboard GPS and BDS2 Observations

2021 ◽  
Vol 13 (21) ◽  
pp. 4487
Author(s):  
Bin Yi ◽  
Defeng Gu ◽  
Kai Shao ◽  
Bing Ju ◽  
Houzhe Zhang ◽  
...  

TH-2 is China’s first short-range satellite formation system used to realize interferometric synthetic aperture radar (InSAR) technology. In order to achieve the mission goal of InSAR processing, the relative orbit must be determined with high accuracy. In this study, the precise relative orbit determination (PROD) for TH-2 based on global positioning system (GPS), second-generation BeiDou navagation satellite system (BDS2), and GPS + BDS2 observations was performed. First, the performance of onboard GPS and BDS2 measurements were assessed by analyzing the available data, code multipath errors and noise levels of carrier phase observations. The differences between the National University of Defense Technology (NDT) and the Xi’an Research Institute of Surveying and Mapping (CHS) baseline solutions exhibited an RMS of 1.48 mm outside maneuver periods. The GPS-based orbit was used as a reference orbit to evaluate the BDS2-based orbit and the GPS + BDS2-based orbit. It is the first time BDS2 has been applied to the PROD of low Earth orbit (LEO) satellite formation. The results showed that the root mean square (RMS) of difference between the PROD results using GPS and BDS2 measurements in 3D components was 2.89 mm in the Asia-Pacific region. We assigned different weights to geostationary Earth orbit (GEO) satellites to illustrate the impact of GEO satellites on PROD, and the accuracy of PROD was improved to 7.08 mm with the GEO weighting strategy. Finally, relative orbits were derived from the combined GPS and BDS2 data. When BDS2 was added on the basis of GPS, the average number of visible navigation satellites from TH-2A and TH-2B improved from 7.5 to 9.5. The RMS of the difference between the GPS + BDS2-based orbit and the GPS-based orbit was about 1.2 mm in 3D. The overlap comparison results showed that the combined orbit consistencies were below 1 mm in the radial (R), along-track (T), and cross-track (N) directions. Furthermore, when BDS2 co-worked with GPS, the average of the ambiguity dilution of precision (ADOP) reduced from 0.160 cycle to 0.153 cycle, which was about a 4.4% reduction. The experimental results indicate that millimeter-level PROD results for TH-2 satellite formation can be obtained by using onboard GPS and BDS2 observations, and multi-GNSS can further improve the accuracy and reliability of PROD.

2018 ◽  
Vol 61 (11) ◽  
pp. 2740-2760 ◽  
Author(s):  
Jean-Sébastien Ardaens ◽  
Gabriella Gaias

1998 ◽  
Vol 46 (4) ◽  
pp. 395-409 ◽  
Author(s):  
F. A. Marcos ◽  
M. J. Rendra ◽  
J. M. Griffin ◽  
J. N. Bass ◽  
D. R. Larson ◽  
...  

Space Weather ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 1806-1816 ◽  
Author(s):  
S. Bruinsma ◽  
E. Sutton ◽  
S. C. Solomon ◽  
T. Fuller-Rowell ◽  
M. Fedrizzi

2020 ◽  
Vol 15 (12) ◽  
pp. 1508-1517
Author(s):  
Xiangfei Yin ◽  
Genyou Liu ◽  
Shilong Cao

The geosynchronous earth orbit (GEO) satellites have good coverage performance and are widely used in WAAS, BDS, CAPS and other regional augmentation and regional navigation systems. At the same time, the precise orbit determination and prediction of such satellites play a significant role in high-precision navigation and user real-time positioning. In order to obtain higher accuracy of orbit determination, the laser ranging device is improved by equipping with a silicon-substrate germanium MSM photodetector in this study. In addition, the surface plasmon resonance augmentation effect is further studied to further enhance the photoelectric performance of the silicon-substrate germanium MSM photodetector. The detector is connected to the OPA657. The corresponding pre-amplified circuit is further designed in this study so that the laser ranging device can be used for the orbit determination application of GEO navigation satellites. In the experiment, the designed silicon-substrate germanium MSM photodetector is tested firstly, the finite-different time-domain (FDTD) method is used to analyze the structure of the photodetector. Then, the effects of the structural parameters such as the grating period on the resonance augmentation of the designed photodetector are analyzed. The results reveal that the photodetector has the best performance at 1500 nm with the absorption enhancement factor of higher than 7. The GNSS combined with the laser ranging is used for comparing the orbit determination errors of GEO satellites. 10 laser observation stations are selected, some of which are equipped with the laser ranging device designed in this study and supply to various GEO satellites for information collection. The results show that GEO satellites have to be introduced to the system deviation when adding the laser ranging data, otherwise they will deviate from the orbit. In addition, the laser ranging device designed in this study can significantly reduce the deviation caused by the introduction of laser ranging data from GEO satellites compared with traditional laser ranging devices.


2020 ◽  
Vol 66 (7) ◽  
pp. 1700-1712
Author(s):  
Chongchong Zhou ◽  
Shiming Zhong ◽  
Bibo Peng ◽  
Jikun Ou ◽  
Jie Zhang ◽  
...  

2012 ◽  
Vol 62 (1) ◽  
pp. 10-22 ◽  
Author(s):  
A. Milani ◽  
D. Farnocchia ◽  
L. Dimare ◽  
A. Rossi ◽  
F. Bernardi

Sign in / Sign up

Export Citation Format

Share Document