The feedback Stackelberg equilibrium in the cartel-versus-fringe model

Author(s):  
Fons Groot
2020 ◽  
pp. 2050009 ◽  
Author(s):  
Ryle S. Perera

In this study we provide a more robust transboundary industrial pollution reduction strategy for global emission collaborations. We consider the dynamics of each country’s quantity of pollution as a Brownian motion with Jumps to capture the systematic jumps caused by surprise effects arising from policy uncertainties within the economy. When the output of each country’s domestic consumption good production is proportional to the level of pollution emissions, we apply optimal control theory to find the Nash noncooperative, cooperative and Stackelberg optimal emission paths. To formulate this problem we allow each country’s discounted stream of net revenues to be maximized via a Stochastic Differential Game (SDG). We then articulate the Nash noncooperative equilibria, cooperative equilibria and Stackelberg equilibria via a feedback control strategy. We show that the outcome of the game depends on the parameters of the game and the type of equilibrium one considers. Furthermore, in this continuous-time differential game paradigm model we show that the feedback Stackelberg equilibrium will not coincide with the feedback Nash noncooperative equilibrium. In this setting, if the first mover advantage of the leader (Player I) disappears then both equilibria coincide.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 325 ◽  
Author(s):  
Shijun Chen ◽  
Huwei Chen ◽  
Shanhe Jiang

Electric vehicles (EVs) are designed to improve the efficiency of energy and prevent the environment from being polluted, when they are widely and reasonably used in the transport system. However, due to the feature of EV’s batteries, the charging problem plays an important role in the application of EVs. Fortunately, with the help of advanced technologies, charging stations powered by smart grid operators (SGOs) can easily and conveniently solve the problems and supply charging service to EV users. In this paper, we consider that EVs will be charged by charging station operators (CSOs) in heterogeneous networks (Hetnet), through which they can exchange the information with each other. Considering the trading relationship among EV users, CSOs, and SGOs, we design their own utility functions in Hetnet, where the demand uncertainty is taken into account. In order to maximize the profits, we formulate this charging problem as a four-stage Stackelberg game, through which the optimal strategy is studied and analyzed. In the Stackelberg game model, we theoretically prove and discuss the existence and uniqueness of the Stackelberg equilibrium (SE). Using the proposed iterative algorithm, the optimal solution can be obtained in the optimization problem. The performance of the strategy is shown in the simulation results. It is shown that the simulation results confirm the efficiency of the model in Hetnet.


2020 ◽  
Vol 13 ◽  
pp. 8-23
Author(s):  
Movlatkhan T. Agieva ◽  
◽  
Olga I. Gorbaneva ◽  

We consider a dynamic Stackelberg game theoretic model of the coordination of social and private interests (SPICE-model) of resource allocation in marketing networks. The dynamics of controlled system describes an interaction of the members of a target audience (basic agents) that leads to a change of their opinions (cost of buying the goods and services of firms competing on a market). An interaction of the firms (influence agents) is formalized as their differential game in strategic form. The payoff functional of each firm includes two terms: the summary opinion of the basic agents with consideration of their marketing costs (a common interest of all firms), and the income from investments in a private activity. The latter income is described by a linear function. The firms exert their influence not to all basic agents but only to the members of strong subgroups of the influence digraph (opinion leaders). The opinion leaders determine the stable final opinions of all members of the target audience. A coordinating principal determines the firms' marketing budgets and maximizes the summary opinion of the basic agents with consideration of the allocated resources. The Nash equilibrium in the game of influence agents and the Stackelberg equilibrium in a general hierarchical game of the principal with them are found. It is proved that the value of opinion of a basic agent is the same for all influence agents and the principal. It is also proved that the influence agents assign less resources for the marketing efforts than the principal would like.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiangze Shi ◽  
Xiao Li ◽  
Zijian He ◽  
Hui Jiang

This paper analyzes the development prospects of zinc-nickel battery industry, further investigates the industry competition in existing markets by mathematical modeling, calculates the equilibrium price and profit of the oligarch competition by using the method of Stackelberg equilibrium and Nash equilibrium, and makes a comparison between them. Then, we study and model the case of renting and selling simultaneously. In addition, we also study the impact of futures prices on the zinc-nickel battery companies and carry out numerical simulation. At the end of this paper, we analyze the location of zinc-nickel battery enterprises and the industry development under the COVID-19 pandemic. The finding show that the reduction of raw material cost is of great help to the development of the zinc-nickel battery industry.


2010 ◽  
Vol 1 (4) ◽  
pp. 1-12 ◽  
Author(s):  
Xiaofeng Zhang ◽  
William K. Cheung ◽  
ZongWei Luo ◽  
Frank Tong

With the adoption of radio frequency identification (RFID) technology, information sharing among participants in a supply chain is greatly facilitated, raising privacy concerns on sharing sensitive information. Balancing the conflicts between the improvement of visibility and the decrease of sensitive information shared is paramount. In this paper, the authors propose a leader-follower game model called LFM to model the strategic game between buyer and supplier. A Stackelberg equilibrium state is then computed as the solution to this game model. The proposed approach exhibits better performance when compared with conventional optimization approaches via derivation in terms of the total information sharing level and the total gain acquired verified by the experiments. In the future, the authors will extend this approach to a more complex situation with more participants in a dynamic environment.


Sign in / Sign up

Export Citation Format

Share Document