The Stokes boundary-value problem with ellipsoidal corrections in boundary condition

Author(s):  
Hong Wang ◽  
Danping Yang

AbstractFractional differential equation (FDE) provides an accurate description of transport processes that exhibit anomalous diffusion but introduces new mathematical difficulties that have not been encountered in the context of integer-order differential equation. For example, the wellposedness of the Dirichlet boundary-value problem of one-dimensional variable-coefficient FDE is not fully resolved yet. In addition, Neumann boundary-value problem of FDE poses significant challenges, partly due to the fact that different forms of FDE and different types of Neumann boundary condition have been proposed in the literature depending on different applications.We conduct preliminary mathematical analysis of the wellposedness of different Neumann boundary-value problems of the FDEs. We prove that five out of the nine combinations of three different forms of FDEs that are closed by three types of Neumann boundary conditions are well posed and the remaining four do not admit a solution. In particular, for each form of the FDE there is at least one type of Neumann boundary condition such that the corresponding boundary-value problem is well posed, but there is also at least one type of Neumann boundary condition such that the corresponding boundary-value problem is ill posed. This fully demonstrates the subtlety of the study of FDE, and, in particular, the crucial mathematical modeling question: which combination of FDE and fractional Neumann boundary condition, rather than which form of FDE or fractional Neumann boundary condition, should be used and studied in applications.


2018 ◽  
Vol 22 ◽  
pp. 01016 ◽  
Author(s):  
Adıgüzel A. Dosiyev ◽  
Rifat Reis

A new method for the solution of a nonlocal boundary value problem with integral boundary condition for Laplace's equation on a rectangular domain is proposed and justified. The solution of the given problem is defined as a solution of the Dirichlet problem by constructing the approximate value of the unknown boundary function on the side of the rectangle where the integral boundary condition was given. Further, the five point approximation of the Laplace operator is used on the way of finding the uniform estimation of the error of the solution which is order of 0(h2), where hi s the mesh size. Numerical experiments are given to support the theoretical analysis made.


Sign in / Sign up

Export Citation Format

Share Document