Appendix 1 The earth observation activities of the European space agency

Author(s):  
B. R. K. Pfeiffer
2009 ◽  
Vol 4 (3) ◽  
pp. 4-16 ◽  
Author(s):  
Sergio Albani ◽  
David Giaretta

ESA-ESRIN, the European Space Agency Centre for Earth Observation (EO), is the largest European EO data provider and operates as the reference European centre for EO payload data exploitation. EO Space Missions provide global coverage of the Earth across both space and time generating on a routine continuous basis huge amounts of data (from a variety of sensors) that need to be acquired, processed, elaborated, appraised and archived by dedicated systems. Long-term Preservation of these data and of the ability to discover, access and process them is a fundamental issue and a major challenge at programmatic, technological and operational levels.Moreover these data are essential for scientists needing broad series of data covering long time periods and from many sources. They are used for many types of investigations including ones of international importance such as the study of the Global Change and the Global Monitoring for Environment and Security (GMES) Program. Therefore it is of primary importance not only to guarantee easy accessibility of historical data but also to ensure users are able to understand and use them; in fact data interpretation can be even more complicated given the fact that scientists may not have (or may not have access to) the right knowledge to interpret these data correctly.To satisfy these requirements, the European Space Agency (ESA), in addition to other internal initiatives, is participating in several EU-funded projects such as CASPAR (Cultural, Artistic, and Scientific knowledge for Preservation, Access and Retrieval), which is building a framework to support the end-to-end preservation lifecycle for digital information, based on the OAIS reference model, with a strong focus on the preservation of the knowledge associated with data.In the CASPAR Project ESA plays the role of both user and infrastructure provider for one of the scientific testbeds, putting into effect dedicated scenarios with the aim of validating the CASPAR solutions in the Earth Science domain. The other testbeds are in the domains of Cultural Heritage and of Contemporary Performing Arts; together they provide a severe test of preservation tools and techniques.In the context of the current ESA overall strategies carried out in collaboration with European EO data owners/providers, entities and institutions which have the objective of guaranteeing long-term preservation of EO data and knowledge, this paper will focus on the ESA participation and contribution to the CASPAR Project, describing in detail the implementation of the ESA scientific testbed.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Valeria Mangano ◽  
Melinda Dósa ◽  
Markus Fränz ◽  
Anna Milillo ◽  
Joana S. Oliveira ◽  
...  

AbstractThe dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute.


Author(s):  
Alberto Lorenzo-Alonso ◽  
Marino Palacios ◽  
Ángel Utanda

Disaster Risk Reduction (DRR) is a high priority on the agenda of main stakeholders involved in sustainable development and Earth Observation (EO) can provide useful, timely and economical information in this context. This short communication outlines the European Space Agency’s (ESA) specific initiative to promote the use and uptake of satellite data in the global development community: ‘Earth Observation for Sustainable Development (EO4SD)’. One activity area under EO4SD is devoted to Disaster Risk Reduction: EO4SD DRR. Within this project, a team of European companies and institutions are tasked to develop EO services for supporting the implementation of DRR in International Financial Institutions’ (IFI) projects. Integration of satellite-borne data and ancillary data to generate insight and actionable information is thereby considered a key factor for improved decision making. To understand and fully account for the essential user requirements (IFI & Client States), engagement with technical leaders is crucial. Fit-for-purpose use of data and comprehensive capacity building eventually ensure scalability and long-term transferability. Future perspectives of EO4SD and DRR regarding mainstreaming are also highlighted.


2019 ◽  
Vol 11 (17) ◽  
pp. 1993 ◽  
Author(s):  
Mertikas ◽  
Donlon ◽  
Vuilleumier ◽  
Cullen ◽  
Féménias ◽  
...  

Satellite altimeters have been producing, as of 1992, an amazing and historic record of sea level changes. As Europe moves into full operational altimetry, it has become imperative that the quality of these monitoring signals with their uncertainties should be controlled, fully and properly descripted, but also traced and connected to undisputable standards and units. Excellent quality is the foundation of these operational services of Europe in altimetry. In line with the above, the strategy of the Fiducial Reference Measurements for Altimetry (FRM4ALT) has been introduced to address and to achieve reliable, long-term, consistent, and undisputable satellite altimetry products for Earth observation and for sea-level change monitoring. FRM4ALT has been introduced and implemented by the European Space Agency in an effort to reach a uniform and absolute standardization for calibrating satellite altimeters. This paper examines the problem and the need behind the FRM4ALT principle to achieve an objective Earth observation. Secondly, it describes the expected FRM products and services which are to come into being out of this new observational strategy. Thirdly, it outlines the technology and the services required for reaching this goal. And finally, it elaborates upon the necessary resources, skills, partnerships, and facilities for establishing FRM standardization for altimetry.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 103
Author(s):  
Giacomo Tommei

The Impact Monitoring (IM) of Near-Earth Objects (NEOs) is a young field of research, considering that 22 years ago precise algorithms to compute an impact probability with the Earth did not exist. On the other hand, the year 2020 just passed saw the increase of IM operational systems: in addition to the two historical systems, CLOMON2 (University of Pisa/SpaceDyS) and Sentry (JPL/NASA), the European Space Agency (ESA) started its own system AstOD. Moreover, in the last five years three systems for the detection of imminent impactors (small asteroidal objects detected a few days before the possible impact with the Earth) have been developed: SCOUT (at JPL/NASA), NEORANGER (at University of Helsinki) and NEOScan (at University of Pisa/SpaceDyS). The IM science, in addition to being useful for the planetary protection, is a very fascinating field of research because it involves astronomy, physics, mathematics and computer science. In this paper I am going to review the mathematical tools and algorithms of the IM science, highlighting the historical evolution and the challenges to be faced in the future.


2021 ◽  
Author(s):  
Georgia Doxani ◽  
Eric F. Vermote ◽  
Sergii Skakun ◽  
Ferran Gascon ◽  
Jean-Claude Roger

<p>The atmospheric correction inter-comparison exercise (ACIX) is an international initiative to benchmark various state-of-the-art atmospheric correction (AC) processors. The first inter-comparison exercise initiated in 2016 with the collaboration of European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) in the frame of the CEOS WGCV (Committee on Earth Observation Satellites, Working Group on Calibration & Validation). The evolution of the participating processors and the increasing interest of AC community to repeat and improve such experiment stimulated the continuation of ACIX and its second implementation (ACIX-II). In particular, 12 AC developer teams from Europe and USA participated in ACIX-II over land sites. In this presentation the benchmarking protocol, i.e. test sites, input data, inter-comparison metrics, etc. will be briefly described and some representative results of ACIX-II will be presented. The inter-comparison outputs varied depending on the sensors, products and sites, demonstrating the strengths and weaknesses of the corresponding processors. In continuation of ACIX-I achievements, the outcomes of the second one are expected to provide an enhanced standardised approach to inter-compare AC processing products, i.e. Aerosol Optical Thickness (AOT), Water Vapour (WV) and Surface Reflectance (SR), and quantitively assessed their quality when in situ measurements are available.</p>


Sign in / Sign up

Export Citation Format

Share Document