Sharper results on the expressive power of generalized quantifiers

Author(s):  
Anil Seth

1995 ◽  
Vol 123 (2) ◽  
pp. 172-184 ◽  
Author(s):  
A. Dawar ◽  
L. Hella


Author(s):  
Dag Westerstahl

Generalized quantifiers are logical tools with a wide range of uses. As the term indicates, they generalize the ordinary universal and existential quantifiers from first-order logic, ‘∀x’ and ‘∃x’, which apply to a formula A(x), binding its free occurrences of x. ∀xA(x) says that A(x) holds for all objects in the universe and ∃xA(x) says that A(x) holds for some objects in the universe, that is, in each case, that a certain condition on A(x) is satisfied. It is natural then to consider other conditions, such as ‘for at least five’, ‘at most ten’, ‘infinitely many’ and ‘most’. So a quantifier Q stands for a condition on A(x), or, more precisely, for a property of the set denoted by that formula, such as the property of being non-empty, being infinite, or containing more than half of the elements of the universe. The addition of such quantifiers to a logical language may increase its expressive power. A further generalization allows Q to apply to more than one formula, so that, for example, Qx(A(x),B(x)) states that a relation holds between the sets denoted by A(x) and B(x), say, the relation of having the same number of elements, or of having a non-empty intersection. One also considers quantifiers binding more than one variable in a formula. Qxy,zu(R(x,y),S(z,u)) could express, for example, that the relation (denoted by) R(x,y) contains twice as many pairs as S(z,u), or that R(x,y) and S(z,u) are isomorphic graphs. In general, then, a quantifier (the attribute ‘generalized’ is often dropped) is syntactically a variable-binding operator, which stands semantically for a relation between relations (on individuals), that is, a second-order relation. Quantifiers are studied in mathematical logic, and have also been applied in other areas, notably in the semantics of natural languages. This entry first presents some of the main logical facts about generalized quantifiers, and then explains their application to semantics.



1997 ◽  
Vol 62 (2) ◽  
pp. 545-574 ◽  
Author(s):  
Georg Gottlob

AbstractWe here examine the expressive power of first order logic with generalized quantifiers over finite ordered structures. In particular, we address the following problem: Given a family Q of generalized quantifiers expressing a complexity class C, what is the expressive power of first order logic FO(Q) extended by the quantifiers in Q? From previously studied examples, one would expect that FO(Q) captures LC, i.e., logarithmic space relativized to an oracle in C. We show that this is not always true. However, after studying the problem from a general point of view, we derive sufficient conditions on C such that FO(Q) captures LC. These conditions are fulfilled by a large number of relevant complexity classes, in particular, for example, by NP. As an application of this result, it follows that first order logic extended by Henkin quantifiers captures LNP. This answers a question raised by Blass and Gurevich [Ann. Pure Appl. Logic, vol. 32, 1986]. Furthermore we show that for many families Q of generalized quantifiers (including the family of Henkin quantifiers), each FO(Q)-formula can be replaced by an equivalent FO(Q)-formula with only two occurrences of generalized quantifiers. This generalizes and extends an earlier normal-form result by I. A. Stewart [Fundamenta Inform, vol. 18, 1993].



2014 ◽  
Vol 79 (4) ◽  
pp. 1224-1246 ◽  
Author(s):  
MERLIJN SEVENSTER

AbstractWe study the expressive power of independence-friendly quantifier prefixes composed of universal$\left( {\forall x/X} \right)$, existential$\left( {\exists x/X} \right)$, and majority quantifiers$\left( {Mx/X} \right)$. We provide four quantifier prefixes that can express NP hard properties and show that all quantifier prefixes capable of expressing NP-hard properties embed at least one of these four quantifier prefixes. As for the quantifier prefixes that do not embed any of these four quantifier prefixes, we show that they are equivalent to a first-order quantifier prefix composed of$\forall x$,$\exists x$, and Mx. In unison, our results imply a dichotomy result: every independence-friendly quantifier prefix is either decidable in LOGSPACE or NP hard.



2013 ◽  
Vol 78 (1) ◽  
pp. 307-316 ◽  
Author(s):  
Fredrik Engström ◽  
Juha Kontinen

AbstractWe characterize the expressive power of extensions of Dependence Logic and Independence Logic by monotone generalized quantifiers in terms of quantifier extensions of existential second-order logic.



Author(s):  
David J. Lobina

The introduction of recursion into linguistics was the result of applying some of the results of mathematical logic to the study of language. In particular, recursion was introduced in the 1950s as a general property of the mechanical procedure underlying the grammar, in order to account for language’s discrete infinity and expressive power—in the 1950s, this mechanical procedure was a production system, whereas more recently, of course, it is the set-operator merge. Unfortunately, the recent literature has confused the general recursive property of a grammar with specific instances of (recursive) rules/operations within a grammar; more worryingly still, there has been a general conflation of these recursive rules with some of the self-embedded structures these rules can generate, adding to the confusion. The conflation is manifold but always fallacious. Moreover, language manifests a much more generally recursive structure than is usually recognized: bundles of the universal (Specifier)-Head-Complement(s) geometry.



Author(s):  
M Pourmahdian ◽  
R Zoghifard

Abstract This paper provides some model-theoretic analysis for probability (modal) logic ($PL$). It is known that this logic does not enjoy the compactness property. However, by passing into the sublogic of $PL$, namely basic probability logic ($BPL$), it is shown that this logic satisfies the compactness property. Furthermore, by drawing some special attention to some essential model-theoretic properties of $PL$, a version of Lindström characterization theorem is investigated. In fact, it is verified that probability logic has the maximal expressive power among those abstract logics extending $PL$ and satisfying both the filtration and disjoint unions properties. Finally, by alternating the semantics to the finitely additive probability models ($\mathcal{F}\mathcal{P}\mathcal{M}$) and introducing positive sublogic of $PL$ including $BPL$, it is proved that this sublogic possesses the compactness property with respect to $\mathcal{F}\mathcal{P}\mathcal{M}$.



2021 ◽  
Vol 178 (1-2) ◽  
pp. 1-30
Author(s):  
Florian Bruse ◽  
Martin Lange ◽  
Etienne Lozes

Higher-Order Fixpoint Logic (HFL) is a modal specification language whose expressive power reaches far beyond that of Monadic Second-Order Logic, achieved through an incorporation of a typed λ-calculus into the modal μ-calculus. Its model checking problem on finite transition systems is decidable, albeit of high complexity, namely k-EXPTIME-complete for formulas that use functions of type order at most k < 0. In this paper we present a fragment with a presumably easier model checking problem. We show that so-called tail-recursive formulas of type order k can be model checked in (k − 1)-EXPSPACE, and also give matching lower bounds. This yields generic results for the complexity of bisimulation-invariant non-regular properties, as these can typically be defined in HFL.



Sign in / Sign up

Export Citation Format

Share Document