Relativized logspace and generalized quantifiers over finite ordered structures

1997 ◽  
Vol 62 (2) ◽  
pp. 545-574 ◽  
Author(s):  
Georg Gottlob

AbstractWe here examine the expressive power of first order logic with generalized quantifiers over finite ordered structures. In particular, we address the following problem: Given a family Q of generalized quantifiers expressing a complexity class C, what is the expressive power of first order logic FO(Q) extended by the quantifiers in Q? From previously studied examples, one would expect that FO(Q) captures LC, i.e., logarithmic space relativized to an oracle in C. We show that this is not always true. However, after studying the problem from a general point of view, we derive sufficient conditions on C such that FO(Q) captures LC. These conditions are fulfilled by a large number of relevant complexity classes, in particular, for example, by NP. As an application of this result, it follows that first order logic extended by Henkin quantifiers captures LNP. This answers a question raised by Blass and Gurevich [Ann. Pure Appl. Logic, vol. 32, 1986]. Furthermore we show that for many families Q of generalized quantifiers (including the family of Henkin quantifiers), each FO(Q)-formula can be replaced by an equivalent FO(Q)-formula with only two occurrences of generalized quantifiers. This generalizes and extends an earlier normal-form result by I. A. Stewart [Fundamenta Inform, vol. 18, 1993].

Author(s):  
Zeno Swijtink

Beth’s theorem is a central result about definability of non-logical symbols in classical first-order theories. It states that a symbol P is implicitly defined by a theory T if and only if an explicit definition of P in terms of some other expressions of the theory T can be deduced from the theory T. Intuitively, the symbol P is implicitly defined by T if, given the extension of these other symbols, T fixes the extension of the symbol P uniquely. In a precise statement of Beth’s theorem this will be replaced by a condition on the models of T. An explicit definition of a predicate symbol states necessary and sufficient conditions: for example, if P is a one-place predicate symbol, an explicit definition is a sentence of the form (x) (Px ≡φ(x)), where φ(x) is a formula with free variable x in which P does not occur. Thus, Beth’s theorem says something about the expressive power of first-order logic: there is a balance between the syntax (the deducibility of an explicit definition) and the semantics (across models of T the extension of P is uniquely determined by the extension of other symbols). Beth’s definability theorem follows immediately from Craig’s interpolation theorem. For first-order logic with identity, Craig’s theorem says that if φ is deducible from ψ, there is an interpolant θ, a sentence whose non-logical symbols are common to φ and ψ, such that θ is deducible from ψ, while φ is deducible from θ. Craig’s theorem and Beth’s theorem also hold for a number of non-classical logics, such as intuitionistic first-order logic and classical second-order logic, but fail for other logics, such as logics with expressions of infinite length.


2004 ◽  
Vol 10 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Jouko Väänänen

§1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness. Any set of sentences of cardinality ≤ κ, every finite subset of which has a model, has itself a model. Löwenheim-Skolem Theorem down to κ. If a sentence of the logic has a model, it has a model of cardinality at most κ. Interpolation Property. If ϕ and ψ are sentences such that ⊨ ϕ → Ψ, then there is θ such that ⊨ ϕ → θ, ⊨ θ → Ψ and the vocabulary of θ is the intersection of the vocabularies of ϕ and Ψ.Lindstrom's famous theorem characterized first order logic as the maximal ℵ0-compact logic with Downward Löwenheim-Skolem Theorem down to ℵ0. With his new concept of absolute logics Barwise was able to get similar characterizations of infinitary languages Lκω. But hopes were quickly frustrated by difficulties arising left and right, and other areas of model theory came into focus, mainly stability theory. No new characterizations of logics comparable to the early characterization of first order logic given by Lindström and of infinitary logic by Barwise emerged. What was first called soft model theory turned out to be as hard as hard model theory.


2021 ◽  
pp. 8-30
Author(s):  
Salvatore Florio ◽  
Øystein Linnebo

Plural logic is a logical system in which plural terms and predicates figure as primitive expressions alongside the singular resources of ordinary first-order logic. The philosophical significance of this system depends on two of its alleged features: being pure logic and providing more expressive power than first-order logic. This chapter first introduces the language and axioms of plural logic and then analyzes this logic’s main philosophical applications in metaphysics, philosophy of mathematics, and semantics.


1999 ◽  
Vol Vol. 3 no. 3 ◽  
Author(s):  
Thomas Schwentick ◽  
Klaus Barthelmann

International audience Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to a formula of the form ∃ x_1,...,x_l, \forall y, φ where φ is r-local around y, i.e. quantification in φ is restricted to elements of the universe of distance at most r from y. \par From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player, easier and can thus simplify inexpressibility proofs. \par As another application, automata models are defined that have, on arbitrary classes of relational structures, exactly the expressive power of first-order logic and existential monadic second-order logic, respectively.


Author(s):  
Julien Grange

We study the expressive power of successor-invariant first-order logic, which is an extension of first-order logic where the usage of a successor relation on the vertices of the graph is allowed, as long as the validity of formulas is independent on the choice of a particular successor. We show that when the degree is bounded, successor-invariant first-order logic is no more expressive than first-order logic.


2014 ◽  
Vol 26 (5) ◽  
pp. 745-788 ◽  
Author(s):  
RĂZVAN DIACONESCU ◽  
ALEXANDRE MADEIRA

A ‘hybridization’ of a logic, referred to as the base logic, consists of developing the characteristic features of hybrid logic on top of the respective base logic, both at the level of syntax (i.e. modalities, nominals, etc.) and of the semantics (i.e. possible worlds). By ‘hybridized institutions’ we mean the result of this process when logics are treated abstractly as institutions (in the sense of the institution theory of Goguen and Burstall). This work develops encodings of hybridized institutions into (many-sorted) first-order logic (abbreviated $\mathcal{FOL}$) as a ‘hybridization’ process of abstract encodings of institutions into $\mathcal{FOL}$, which may be seen as an abstraction of the well-known standard translation of modal logic into $\mathcal{FOL}$. The concept of encoding employed by our work is that of comorphism from institution theory, which is a rather comprehensive concept of encoding as it features encodings both of the syntax and of the semantics of logics/institutions. Moreover, we consider the so-called theoroidal version of comorphisms that encode signatures to theories, a feature that accommodates a wide range of concrete applications. Our theory is also general enough to accommodate various constraints on the possible worlds semantics as well a wide variety of quantifications. We also provide pragmatic sufficient conditions for the conservativity of the encodings to be preserved through the hybridization process, which provides the possibility to shift a formal verification process from the hybridized institution to $\mathcal{FOL}$.


1982 ◽  
Vol 47 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Carl Morgenstern

In this note we investigate an extension of Peano arithmetic which arises from adjoining generalized quantifiers to first-order logic. Markwald [2] first studied the definability properties of L1, the language of first-order arithmetic, L, with the additional quantifer Ux which denotes “there are infinitely many x such that…. Note that Ux is the same thing as the Keisler quantifier Qx in the ℵ0 interpretation.We consider L2, which is L together with the ℵ0 interpretation of the Magidor-Malitz quantifier Q2xy which denotes “there is an infinite set X such that for distinct x, y ∈ X …”. In [1] Magidor and Malitz presented an axiom system for languages which arise from adding Q2 to a first-order language. They proved that the axioms are valid in every regular interpretation, and, assuming ◊ω1, that the axioms are complete in the ℵ1 interpretation.If we let denote Peano arithmetic in L2 with induction for L2 formulas and the Magidor-Malitz axioms as logical axioms, we show that in we can give a truth definition for first-order Peano arithmetic, . Consequently we can prove in that is Πn sound for every n, thus in we can prove the Paris-Harrington combinatorial principle and the higher-order analogues due to Schlipf.


2005 ◽  
Vol 70 (3) ◽  
pp. 696-712 ◽  
Author(s):  
Johan Van Benthem

AbstractMinimal predicates P satisfying a given first-order description ϕ(P) occur widely in mathematical logic and computer science. We give an explicit first-order syntax for special first-order ‘PIA conditions’ ϕ(P) which guarantees unique existence of such minimal predicates. Our main technical result is a preservation theorem showing PIA-conditions to be expressively complete for all those first-order formulas that are preserved under a natural model-theoretic operation of ‘predicate intersection’. Next, we show how iterated predicate minimization on PIA-conditions yields a language MIN(FO) equal in expressive power to LFP(FO), first-order logic closed under smallest fixed-points for monotone operations. As a concrete illustration of these notions, we show how our sort of predicate minimization extends the usual frame correspondence theory of modal logic, leading to a proper hierarchy of modal axioms: first-order-definable, first-order fixed-point definable, and beyond.


2013 ◽  
Vol 24 (02) ◽  
pp. 211-232 ◽  
Author(s):  
ALESSANDRO CARIONI ◽  
SILVIO GHILARDI ◽  
SILVIO RANISE

We identify sufficient conditions to automatically establish the termination of a backward reachability procedure for infinite state systems by using well-quasi-orderings. Besides showing that backward reachability succeeds on many instances of problems covered by general termination results, we argue that it could predict termination also on interesting instances of the reachability problem that are outside the scope of applicability of such general results. We work in the declarative framework of Model Checking Modulo Theories that permits us to exploit recent advances in Satisfiability Modulo Theories solving and model-theoretic notions of first-order logic.


2009 ◽  
Vol 74 (1) ◽  
pp. 168-186 ◽  
Author(s):  
Michael Benedikt ◽  
Luc Segoufin

AbstractThis work deals with the expressive power of logics on finite graphs with access to an additional “arbitrary” linear order. The queries that can be expressed this way are the order-invariant queries for the logic. For the standard logics used in computer science, such as first-order logic, it is known that access to an arbitrary linear order increases the expressiveness of the logic. However, when we look at the separating examples, we find that they have satisfying models whose Gaifman Graph is complex – unbounded in valence and in treewidth. We thus explore the expressiveness of order-invariant queries over well-behaved graphs. We prove that first-order order-invariant queries over strings and trees have no additional expressiveness over first-order logic in the original signature. We also prove new upper bounds on order-invariant queries over bounded treewidth and bounded valence graphs. Our results make use of a new technique of independent interest: the application of algebraic characterizations of definability to show collapse results.


Sign in / Sign up

Export Citation Format

Share Document