The fourier transformation and inversion formulas for S u 0 for all u

Author(s):  
Allan J. Silberger
1995 ◽  
Vol 196 (3) ◽  
pp. 861-884 ◽  
Author(s):  
M.M. Nessibi ◽  
L.T. Rachdi ◽  
K. Trimeche

Author(s):  
Ashish Pathak ◽  
Dileep Kumar

Using the theory of continuous Bessel wavelet transform in $L^2 (\mathbb{R})$-spaces, we established the Parseval and inversion formulas for the $L^{p,\sigma}(\mathbb{R}^+)$- spaces. We investigate continuity and boundedness properties of Bessel wavelet transform in Besov-Hankel spaces. Our main results: are the characterization of Besov-Hankel spaces by using continuous Bessel wavelet coefficient.


Geophysics ◽  
1991 ◽  
Vol 56 (8) ◽  
pp. 1164-1169 ◽  
Author(s):  
Paul Docherty

Kirchhoff migration has traditionally been viewed as an imaging procedure. Usually, few claims are made regarding the amplitudes in the imaged section. In recent years, a number of inversion formulas, similar in form to those of Kirchhoff migration, have been proposed. A Kirchhoff‐type inversion produces not only an image but also an estimate of velocity variations, or perhaps reflection coefficients. The estimate is obtained from the peak amplitudes in the image. In this paper prestack Kirchhoff migration and inversion formulas for the one‐parameter acoustic wave equation are compared. Following a heuristic approach based on the imaging principle, a migration formula is derived which turns out to be identical to one proposed by Bleistein for inversion. Prestack Kirchhoff migration and inversion are, thus, seen to be the same—both in terms of the image produced and the peak amplitudes of the output.


2019 ◽  
Vol 20 (2) ◽  
pp. 1129 ◽  
Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Dongkyu Lim

2007 ◽  
Vol 17 (02) ◽  
pp. 261-288 ◽  
Author(s):  
WENHUA ZHAO

Let z = (z1, z2,…, zn) be noncommutative free variables and t a formal parameter which commutes with z. Let k be any unital integral domain of any characteristic and Ft(z) = z - Ht(z) with Ht(z) ∈ k[[t]]〈〈z〉〉×n and the order o(Ht(z))≥ 2. Note that Ft(z) can be viewed as a deformation of the formal map F(z):= z - Ht=1(z) when it makes sense (for example, when Ht(z) ∈ k[t]〈〈z〉〉×n). The inverse map Gt(z) of Ft(z) can always be written as Gt(z) = z+Mt(z) with Mt(z) ∈ k[[t]]〈〈z〉〉×n and o(Mt(z)) ≥ 2. In this paper, we first derive the PDEs satisfied by Mt(z) and u(Ft), u(Gt) ∈ k[[t]]〈〈z〉〉 with u(z) ∈ k〈〈z〉〉 in the general case as well as in the special case when Ht(z) = tH(z) for some H(z) ∈ k〈〈z〉〉×n. We also show that the elements above are actually characterized by certain Cauchy problems of these PDEs. Secondly, we apply the derived PDEs to prove a recurrent inversion formula for formal maps in noncommutative variables. Finally, for the case char. k = 0, we derive an expansion inversion formula by the planar binary rooted trees.


1994 ◽  
Vol 31 (2) ◽  
pp. 430-437
Author(s):  
Shaler Stidham

Previous papers have established sample-path versions of relations between marginal time-stationary and event-stationary (Palm) state probabilities for a process with an imbedded point process. This paper extends the use of sample-path analysis to provide relations between frequencies for arbitrary (measurable) sets in function space, rather than just marginal (one-dimensional) frequencies. We define sample-path analogues of the time-stationary and event-stationary (Palm) probability measures for a process with an imbedded point process, and then derive sample-path versions of the Palm transformation and inversion formulas.


1991 ◽  
Vol 25 (1) ◽  
pp. 1-5 ◽  
Author(s):  
I. M. Gel'fand ◽  
M. I. Graev

Sign in / Sign up

Export Citation Format

Share Document