A universal one-dimensional metric space

Author(s):  
Stephen Leon Lipscomb
Keyword(s):  

2016 ◽  
Vol 59 (4) ◽  
pp. 673-681 ◽  
Author(s):  
Miroslav Bačák ◽  
Leonid V. Kovalev

AbstractLet X(n), for n ∊ ℕ, be the set of all subsets of a metric space (X, d) of cardinality at most n. The set X(n) equipped with the Hausdorff metric is called a finite subset space. In this paper we are concerned with the existence of Lipschitz retractions r: X(n)→ X(n − 1) for n ≥ 2. It is known that such retractions do not exist if X is the one-dimensional sphere. On the other hand, Kovalev has recently established their existence if X is a Hilbert space, and he also posed a question as to whether or not such Lipschitz retractions exist when X is a Hadamard space. In this paper we answer the question in the positive.





1957 ◽  
Vol 33 (8) ◽  
pp. 445-449 ◽  
Author(s):  
Jun-iti Nagata
Keyword(s):  


2020 ◽  
Vol 54 (6) ◽  
pp. 2159-2197
Author(s):  
Virginie Ehrlacher ◽  
Damiano Lombardi ◽  
Olga Mula ◽  
François-Xavier Vialard

We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the L2-Wasserstein space.



1981 ◽  
Vol 33 (2) ◽  
pp. 450-453 ◽  
Author(s):  
James T. Rogers

The purpose of this note is to prove an improved version of Jones' Aposyndetic Decomposition Theorem. Corollaries to the new theorem re-emphasize the importance of understanding aposyndetic, homogeneous continua.The proof is a synthesis of results about homogeneous continua with results from an unexpected source: completely regular mappings. Completely regular mappings occur naturally and often in the study of homogeneous continua, which is a surprising and pleasing phenomenon, since these mappings were invented for quite another purpose [1]. The author believes that these maps are likely to provide even more new information about homogeneous continua.A continuum is a compact, connected, nonvoid metric space. A curve is a one-dimensional continuum. A continuum M is homogeneous if for each pair of points p and q belonging to M, there exists a homeomorphism h: M → M such that h(p) = q.



2011 ◽  
Vol 22 (07) ◽  
pp. 711-718 ◽  
Author(s):  
HASAN AKIN

In this short paper, we study the measure directional entropy of a ℤ2-action generated by an invertible one-dimensional linear cellular automaton and the shift map acting on the compact metric space [Formula: see text]. We obtain an upper bound of the measure directional entropy of the ℤ2-action with respect to arbitrary Bernoulli measures without making use of the natural extension previously used in the paper [M. Courbage and B. Kaminski, Studia Math. 153(3), 285–295 (2002)].



1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.



Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).



Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.



Author(s):  
A.Q. He ◽  
G.W. Qiao ◽  
J. Zhu ◽  
H.Q. Ye

Since the first discovery of high Tc Bi-Sr-Ca-Cu-O superconductor by Maeda et al, many EM works have been done on it. The results show that the superconducting phases have a type of ordered layer structures similar to that in Y-Ba-Cu-O system formulated in Bi2Sr2Can−1CunO2n+4 (n=1,2,3) (simply called 22(n-1) phase) with lattice constants of a=0.358, b=0.382nm but the length of c being different according to the different value of n in the formulate. Unlike the twin structure observed in the Y-Ba-Cu-O system, there is an incommensurate modulated structure in the superconducting phases of Bi system superconductors. Modulated wavelengths of both 1.3 and 2.7 nm have been observed in the 2212 phase. This communication mainly presents the intergrowth of these two kinds of one-dimensional modulated structures in 2212 phase.



Sign in / Sign up

Export Citation Format

Share Document