scholarly journals Lipschitz Retractions in Hadamard Spaces via Gradient Flow Semigroups

2016 ◽  
Vol 59 (4) ◽  
pp. 673-681 ◽  
Author(s):  
Miroslav Bačák ◽  
Leonid V. Kovalev

AbstractLet X(n), for n ∊ ℕ, be the set of all subsets of a metric space (X, d) of cardinality at most n. The set X(n) equipped with the Hausdorff metric is called a finite subset space. In this paper we are concerned with the existence of Lipschitz retractions r: X(n)→ X(n − 1) for n ≥ 2. It is known that such retractions do not exist if X is the one-dimensional sphere. On the other hand, Kovalev has recently established their existence if X is a Hilbert space, and he also posed a question as to whether or not such Lipschitz retractions exist when X is a Hadamard space. In this paper we answer the question in the positive.

2008 ◽  
Vol 45 (03) ◽  
pp. 879-887 ◽  
Author(s):  
Nader Ebrahimi

Nanosystems are devices that are in the size range of a billionth of a meter (1 x 10-9) and therefore are built necessarily from individual atoms. The one-dimensional nanosystems or linear nanosystems cover all the nanosized systems which possess one dimension that exceeds the other two dimensions, i.e. extension over one dimension is predominant over the other two dimensions. Here only two of the dimensions have to be on the nanoscale (less than 100 nanometers). In this paper we consider the structural relationship between a linear nanosystem and its atoms acting as components of the nanosystem. Using such information, we then assess the nanosystem's limiting reliability which is, of course, probabilistic in nature. We consider the linear nanosystem at a fixed moment of time, say the present moment, and we assume that the present state of the linear nanosystem depends only on the present states of its atoms.


1970 ◽  
Vol 37 (2) ◽  
pp. 267-270 ◽  
Author(s):  
D. Pnueli

A method is presented to obtain both upper and lower bound to eigenvalues when a variational formulation of the problem exists. The method consists of a systematic shift in the weight function. A detailed procedure is offered for one-dimensional problems, which makes improvement of the bounds possible, and which involves the same order of detailed computation as the Rayleigh-Ritz method. The main contribution of this method is that it yields the “other bound;” i.e., the one which cannot be obtained by the Rayleigh-Ritz method.


2002 ◽  
Vol 2 (Special) ◽  
pp. 578-595
Author(s):  
N. Konno

In this paper we consider limit theorems, symmetry of distribution, and absorption problems for two types of one-dimensional quantum random walks determined by $2 \times 2$ unitary matrices using our PQRS method. The one type was introduced by Gudder in 1988, and the other type was studied intensively by Ambainis et al. in 2001. The difference between both types of quantum random walks is also clarified.


2020 ◽  
Vol 35 (31) ◽  
pp. 2050255
Author(s):  
D. Ojeda-Guillén ◽  
R. D. Mota ◽  
M. Salazar-Ramírez ◽  
V. D. Granados

We extend the (1 + 1)-dimensional Dirac–Moshinsky oscillator by changing the standard derivative by the Dunkl derivative. We demonstrate in a general way that for the Dirac–Dunkl oscillator be parity invariant, one of the spinor component must be even, and the other spinor component must be odd, and vice versa. We decouple the differential equations for each of the spinor component and introduce an appropriate su(1, 1) algebraic realization for the cases when one of these functions is even and the other function is odd. The eigenfunctions and the energy spectrum are obtained by using the su(1, 1) irreducible representation theory. Finally, by setting the Dunkl parameter to vanish, we show that our results reduce to those of the standard Dirac-Moshinsky oscillator.


2018 ◽  
Vol 20 (31) ◽  
pp. 20417-20426 ◽  
Author(s):  
Yosslen Aray ◽  
Antonio Díaz Barrios

The nature of the electron density localization in two MoS2 nanoclusters containing eight rows of Mo atoms, one with 100% sulphur coverage at the Mo edges (n8_100S) and the other with 50% coverage (n8_50S) was studied using a localized-electron detector function defined in the local moment representation.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Juan Sebastián Ardenghi ◽  
Olimpia Lombardi

Modal interpretations are non-collapse interpretations, where the quantum state of a system describes its possible properties rather than the properties that it actually possesses. Among them, the atomic modal interpretation (AMI) assumes the existence of a special set of disjoint systems that fixes the preferred factorization of the Hilbert space. The aim of this paper is to analyze the relationship between the AMI and our recently presented modal-hamiltonian interpretation (MHI), by showing that the MHI can be viewed as a kind of “atomic” interpretation in two different senses. On the one hand, the MHI provides a precise criterion for the preferred factorization of the Hilbert space into factors representing elemental systems. On the other hand, the MHI identifies the atomic systems that represent elemental particles on the basis of the Galilei group. Finally, we will show that the MHI also introduces a decomposition of the Hilbert space of any elemental system, which determines with precision what observables acquire definite actual values.


2015 ◽  
Vol 93 (1) ◽  
pp. 146-151 ◽  
Author(s):  
LEONID V. KOVALEV

Finite subset spaces of a metric space $X$ form a nested sequence under natural isometric embeddings $X=X(1)\subset X(2)\subset \cdots \,$. We prove that this sequence admits Lipschitz retractions $X(n)\rightarrow X(n-1)$ when $X$ is a Hilbert space.


2015 ◽  
Vol 56 ◽  
Author(s):  
Vytautas Kazakevičius

We prove that each Feller transition probability is the one-dimensional distribution of some stochastically continuous random function. We also introduce the notion of a regular random function and show, on one hand, that every random  function has a regular modification, and on the other hand, that the composition of independent regular stochastically continuous random functions is stochastically continuous as well.


2013 ◽  
Vol Vol. 15 no. 2 (Automata, Logic and Semantics) ◽  
Author(s):  
Marcella Anselmo ◽  
Maria Madonia

Automata, Logic and Semantics International audience The paper presents a condition necessarily satisfied by (tiling system) recognizable two-dimensional languages. The new recognizability condition is compared with all the other ones known in the literature (namely three conditions), once they are put in a uniform setting: they are stated as bounds on the growth of some complexity functions defined for two-dimensional languages. The gaps between such functions are analyzed and examples are shown that asymptotically separate them. Finally the new recognizability condition results to be the strongest one, while the remaining ones are its particular cases. The problem of deciding whether a two-dimensional language is recognizable is here related to the one of estimating the minimal size of finite automata recognizing a sequence of (one-dimensional) string languages.


Sign in / Sign up

Export Citation Format

Share Document