Global perturbation of the riemann problem for the system of one-dimensional isentropic flow

Author(s):  
Li Ta-tsien ◽  
Zhao Yan-chun
Author(s):  
Joseph Majdalani

We consider the compressible flow analogue of the well-known Taylor–Culick profile. We first present the compressible Euler equations for steady, axisymmetric, isentropic flow assuming uniform injection of a calorically perfect gas in a porous chamber. We then apply the Rayleigh–Janzen expansion in powers of , where M w is the wall Mach number. We solve the ensuing equations to the order of and apply the results up to the sonic point in a nozzleless chamber. Area averaging is also performed to reconcile with one-dimensional theory. Our solution agrees with the existing theory to the extent that it faithfully captures the steepening of the Taylor–Culick profile with downstream movement. Based on the closed-form expressions that we obtain, the main flow attributes are quantified parametrically and compared to the existing incompressible and quasi-one-dimensional theories. Verification by computational fluid dynamics is also undertaken. Comparison with two turbulent flow models shows excellent agreement, particularly in retracing the streamwise evolution of the velocity. Regardless of the Mach number, we observe nearly identical trends in chambers that are rescaled by the (critical) sonic length, L s . Using a suitable transformation, we prove the attendant similarity and provide universal criteria that can be used to assess the relative importance of gas compression in solid rocket motors. Owing to sharper velocity gradients at the wall, we find that an incompressible model underestimates the skin friction along the wall and underpredicts the centreline speed by as much as 13% at the sonic point. In practice, such deviations become appreciable at high-injection rates or chamber aspect ratios.


Sign in / Sign up

Export Citation Format

Share Document