Dynamics of flux tubes in the solar atmosphere: Observations

Author(s):  
S. K. Solanki
Keyword(s):  

2017 ◽  
Vol 851 (1) ◽  
pp. 42 ◽  
Author(s):  
Jianping Xiong ◽  
Yunfei Yang ◽  
Chunlan Jin ◽  
Kaifan Ji ◽  
Song Feng ◽  
...  


2019 ◽  
Vol 489 (1) ◽  
pp. 28-35
Author(s):  
Frederick A Gent ◽  
Ben Snow ◽  
Viktor Fedun ◽  
Robertus Erdélyi

ABSTRACT The magnetic network extending from the photosphere (solar radius ≃ R⊙) to the lower corona ($\mathrm{ R}_\odot +10\, {\rm Mm}$) plays an important role in the heating mechanisms of the solar atmosphere. Here we develop further the models of the authors with realistic open magnetic flux tubes, in order to model more complicated configurations. Closed magnetic loops and combinations of closed and open magnetic flux tubes are modelled. These are embedded within a stratified atmosphere, derived from observationally motivated semi-empirical and data-driven models subject to solar gravity and capable of spanning from the photosphere up into the chromosphere and lower corona. Constructing a magnetic field comprising self-similar magnetic flux tubes, an analytic solution for the kinetic pressure and plasma density is derived. Combining flux tubes of opposite polarity, it is possible to create a steady background magnetic field configuration, modelling a solar atmosphere exhibiting realistic stratification. The result can be applied to the Solar and Heliospheric Observatory Michelson Doppler Imager (SOHO/MDI), Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) and other magnetograms from the solar surface, for which photospheric motions can be simulated to explore the mechanism of energy transport. We demonstrate this powerful and versatile method with an application to HMI data.



1983 ◽  
Vol 266 ◽  
pp. 866 ◽  
Author(s):  
S. T. Wu ◽  
Y. Q. Hu ◽  
Y. Nakagawa ◽  
E. Tandberg-Hanssen




2010 ◽  
Vol 6 (S273) ◽  
pp. 426-429
Author(s):  
Isroil Sattarov

AbstractToday's Solar Physics comes across of different type of fine structures in solar atmosphere including umbral dots and penumbral grains in sunspots, and G-band bright points in quiet Sun. In this report, we present evidence that umbral dots, penumbral grains, and, possibly, G band bright points are related to a common type of features in solar atmosphere magnetic flux tubes.



2018 ◽  
Vol 13 (S340) ◽  
pp. 55-56
Author(s):  
S. Sen ◽  
A. Mangalam

AbstractWe construct two classes of the magnetohydrostatic equilibria of the axisymmetric flux tubes with twisted magnetic fields in the stratified solar atmosphere that span from the photosphere to the transition region. We built the models by incorporating specific forms of the gas pressure and poloidal current in the Grad-Shafranov equation. This model gives both closed and open field structure of the flux tube. The other open field model we construct is based on the self-similar formulation, where we have incorporated specific forms of the gas pressure, poloidal current and two different shape functions. We study the homology of the parameter space that is consistent with the solar atmosphere and find that the estimation of the magnetic structure inside the flux tubes is consistent with the observation and simulation results of the magnetic bright points.



1990 ◽  
Vol 142 ◽  
pp. 159-174
Author(s):  
B Roberts

The basic aspects of wave propagation in a magnetic flux tube are reviewed, with particular emphasis on the types of flux tube that occur in the solar atmosphere. Two fundamental speeds arise naturally in a description of wave propagation in a flux tube: the slow magnetoacoustic (cusp) speed cT, which is both subsonic and sub-Alfvénic, and a mean Alfvén speed ck. Both surface and body modes are supported by a tube. It is stressed that a flux tube may act as a wave guide, similar to the guidance of light by a fibre optic, or sound in an ocean layer, or seismic waves in the Earth's crust.



2019 ◽  
Vol 491 (4) ◽  
pp. 4852-4856 ◽  
Author(s):  
Hugh S Hudson ◽  
Alec MacKinnon ◽  
Mikolaj Szydlarski ◽  
Mats Carlsson

ABSTRACT High-energy particles enter the solar atmosphere from Galactic or solar coronal sources, and produce ‘albedo’ emission from the quiet Sun that is now observable across a wide range of photon energies. The interaction of high-energy particles in a stellar atmosphere depends essentially upon the joint variation of the magnetic field and plasma density, which heretofore has been characterized parametrically as P ∝ Bα with P the gas pressure and B the magnitude of the magnetic field. We re-examine that parametrization by using a self-consistent 3D MHD model (Bifrost) and show that this relationship tends to P ∝ B3.5 ± 0.1 based on the visible portions of the sample of open-field flux tubes in such a model, but with large variations from point to point. This scatter corresponds to the strong meandering of the open-field flux tubes in the lower atmosphere, which will have a strong effect on the prediction of the emission anisotropy (limb brightening). The simulations show that much of the open flux in coronal holes originates in weak-field regions within the granular pattern of the convective motions seen in the simulations.



2020 ◽  
Vol 645 ◽  
pp. A3
Author(s):  
N. Yadav ◽  
R. H. Cameron ◽  
S. K. Solanki

Context. Vortex flows exist across a broad range of spatial and temporal scales in the solar atmosphere. Small-scale vortices are thought to play an important role in energy transport in the solar atmosphere. However, their physical properties remain poorly understood due to the limited spatial resolution of the observations. Aims. We explore and analyze the physical properties of small-scale vortices inside magnetic flux tubes using numerical simulations, and investigate whether they contribute to heating the chromosphere in a plage region. Methods. Using the three-dimensional radiative magnetohydrodynamic simulation code MURaM, we perform numerical simulations of a unipolar solar plage region. To detect and isolate vortices we use the swirling strength criterion and select the locations where the fluid is rotating with an angular velocity greater than a certain threshold. We concentrate on small-scale vortices as they are the strongest and carry most of the energy. We explore the spatial profiles of physical quantities such as density and horizontal velocity inside these vortices. Moreover, to learn their general characteristics, a statistical investigation is performed. Results. Magnetic flux tubes have a complex filamentary substructure harboring an abundance of small-scale vortices. At the interfaces between vortices strong current sheets are formed that may dissipate and heat the solar chromosphere. Statistically, vortices have higher densities and higher temperatures than the average values at the same geometrical height in the chromosphere. Conclusions. We conclude that small-scale vortices are ubiquitous in solar plage regions; they are denser and hotter structures that contribute to chromospheric heating, possibly by dissipation of the current sheets formed at their interfaces.



Sign in / Sign up

Export Citation Format

Share Document