Is the AOT/water/oil system really simple? Conductivity measurements in ionic and nonionic microemulsions

Author(s):  
W. Sager ◽  
W. Sun ◽  
H. F. Eicke

1991 ◽  
Vol 18 (3) ◽  
pp. 611-627 ◽  
Author(s):  
Marta L. Fiorotto ◽  
William J. Klish


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-303-C7-304
Author(s):  
M. Skowronek ◽  
L. Giry ◽  
Vu Tien Gia ◽  
P. Romeas


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.



2017 ◽  
Vol 68 (11) ◽  
pp. 2482-2487
Author(s):  
George Lazar ◽  
Claudiu Campureanu ◽  
Ioan Cirneanu ◽  
Danut Ionel Vaireanu

This paper intends to present the theoretical background as well as practical illustrations for good laboratory practices in conductivity measurements, ways to increase the accuracy of conductivity measurements as well as how one may evaluate the uncertainty of conductivity measurements for the electrolyte solutions. Practical measurements for prepared standards of 1 M KCl and 0.1 M KCl solutions are carried out and the values of repeatability, composed uncertainty and expanded uncertainty are presented.







1999 ◽  
Vol 30 (4-5) ◽  
pp. 333-360 ◽  
Author(s):  
Larry McKay ◽  
Johnny Fredericia ◽  
Melissa Lenczewski ◽  
Jørn Morthorst ◽  
Knud Erik S. Klint

A field experiment shows that rapid downward migration of solutes and microorganisms can occur in a fractured till. A solute tracer, chloride, and a bacteriophage tracer, PRD-1, were added to groundwater and allowed to infiltrate downwards over a 4 × 4 m area. Chloride was detected in horizontal filters at 2.0 m depth within 3-40 days of the start of the tracer test, and PRD-1 was detected in the same filters within 0.27 - 27 days. At 2.8 m depth chloride appeared in all the filters, but PRD-1 appeared in only about one-third of the filters. At 4.0 m depth chloride appeared in about one-third of the filters and trace amounts of PRD-1 were detected in only 2 of the 36 filters. Transport rates and peak tracer concentrations decreased with depth, but at each depth there was a high degree of variability. The transport data is generally consistent with expectations based on hydraulic conductivity measurements and on the observed density of fractures and biopores, both of which decrease with depth. Transport of chloride was apparently retarded by diffusion into the fine-grained matrix between fractures, but the rapid transport of PRD-1, with little dispersion, indicates that it was transported mainly through the fractures.



1993 ◽  
Vol 58 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Mohamed M. Shoukry ◽  
Eman M. Shoukry

The formation constants of the binary and ternary complexes of palladium(II) with diethylenetriamine and amino acids as ligands have been determined potentiometrically at 25 °C in 0.1 M NaNO3 solution. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of ∆logK values. The mode of chelation was ascertained by conductivity measurements.



1992 ◽  
Vol 293 ◽  
Author(s):  
Herve Cheradame ◽  
F. Desbat ◽  
P. Mercier-Niddam ◽  
S. Boileau

AbstractIonically conducting materials containing PEO were prepared from telechelic di(methyl-diethoxy-silane) PEO, synthesized by the hydrosilylation of telechelic diallyl-PEO with methyldiethoxysilane. The network is obtained by the usual sol-gel chemistry. Then, it is filled with LiClO4 by diffusion of the salt and further drying. A comparison is made with the same kind of materials crosslinked using urethane chemistry. Diffusion studies show that the diffusion coefficient of solvent is similar for both types of materials, whilst the ionic conductivity is higher for the networks crosslinked with siloxane bonds. An experiment of diffusion of LiClO4 without solvent showed that this salt has a diffusion coefficient of the order of 2.10-8 cm2.sec-1 at 34°C. The conductivity calculated from this determination is compatible with the mechanism of lithium cation transport by the diffusion of salt molecules. Elasticity modulus measurements show that the salt aggregates are essentially located within the crosslinks at low concentration, but also in the PEO chains for salt concentrations higher than 1 mol/l.



Sign in / Sign up

Export Citation Format

Share Document