scholarly journals Linking the supersymmetric standard model to the cosmological constant

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract String theory has no parameter except the string scale MS, so the Planck scale MPl, the supersymmetry-breaking scale "Image missing", the electroweak scale mEW as well as the vacuum energy density (cosmological constant) Λ are to be determined dynamically at any local minimum solution in the string theory landscape. Here we consider a model that links the supersymmetric electroweak phenomenology (bottom up) to the string theory motivated flux compactification approach (top down). In this model, supersymmetry is broken by a combination of the racetrack Kähler uplift mechanism, which naturally allows an exponentially small positive Λ in a local minimum, and the anti-D3-brane in the KKLT scenario. In the absence of the Higgs doublets from the supersymmetric standard model, one has either a small Λ or a big enough "Image missing", but not both. The introduction of the Higgs fields (with their soft terms) allows a small Λ and a big enough "Image missing" simultaneously. Since an exponentially small Λ is statistically preferred (as the properly normalized probability distribution P(Λ) diverges at Λ = 0+), identifying the observed Λobs to the median value Λ50% yields mEW∼ 100 GeV. We also find that the warped anti-D3-brane tension has a SUSY-breaking scale "Image missing" ∼ 100 mEW while the SUSY-breaking scale that directly correlates with the Higgs fields in the visible sector is "Image missing" ≃ mEW.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Shing Yan Li ◽  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract Guided by the naturalness criterion for an exponentially small cosmological constant, we present a string theory motivated 4-dimensional $$ \mathcal{N} $$ N = 1 non-linear supergravity model (or its linear version with a nilpotent superfield) with spontaneous supersymmetry breaking. The model encompasses the minimal supersymmetric standard model, the racetrack Kähler uplift, and the KKLT anti-D3-branes, and use the nilpotent superfield to project out the undesirable interaction terms as well as the unwanted degrees of freedom to end up with the standard model (not the supersymmetric version) of strong and electroweak interactions.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944005
Author(s):  
Samir D. Mathur

The vacuum must contain virtual fluctuations of black hole microstates for each mass [Formula: see text]. We observe that the expected suppression for [Formula: see text] is counteracted by the large number [Formula: see text] of such states. From string theory, we learn that these microstates are extended objects that are resistant to compression. We argue that recognizing this ‘virtual extended compression-resistant’ component of the gravitational vacuum is crucial for understanding gravitational physics. Remarkably, such virtual excitations have no significant effect for observable systems like stars, but they resolve two important problems: (a) gravitational collapse is halted outside the horizon radius, removing the information paradox, (b) spacetime acquires a ‘stiffness’ against the curving effects of vacuum energy; this ameliorates the cosmological constant problem posed by the existence of a planck scale [Formula: see text].


2014 ◽  
Vol 737 ◽  
pp. 167-171 ◽  
Author(s):  
C.D. Froggatt ◽  
R. Nevzorov ◽  
H.B. Nielsen ◽  
A.W. Thomas

2012 ◽  
Vol 27 (11) ◽  
pp. 1250063 ◽  
Author(s):  
C. FROGGATT ◽  
R. NEVZOROV ◽  
H. B. NIELSEN

In N = 1 supergravity supersymmetric and nonsupersymmetric Minkowski vacua originating in the hidden sector can be degenerate. In the supersymmetric phase in flat Minkowski space, nonperturbative supersymmetry breakdown may take place in the observable sector, inducing a nonzero and positive vacuum energy density. Assuming that such a supersymmetric phase and the phase in which we live are degenerate, we estimate the value of the cosmological constant. We argue that the observed value of the dark energy density can be reproduced in the split SUSY scenario of SUSY breaking if the SUSY breaking scale is of order of 1010 GeV.


2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Mehmet Demirtas ◽  
Manki Kim ◽  
Liam McAllister ◽  
Jakob Moritz ◽  
Andres Rios-Tascon

2019 ◽  
Vol 28 (14) ◽  
pp. 1944018 ◽  
Author(s):  
Per Berglund ◽  
Tristan Hübsch ◽  
Djordje Minić

Realizing dark energy and the observed de Sitter spacetime in quantum gravity has proven to be obstructed in almost every usual approach. We argue that additional degrees of freedom of the left- and right-movers in string theory and a resulting doubled, noncommutatively generalized geometric formulation thereof can lead to an effective model of dark energy consistent with de Sitter spacetime. In this approach, the curvature of the canonically conjugate dual space provides for the dark energy inducing a positive cosmological constant in the observed spacetime, whereas the size of the above dual space is the gravitational constant in the same observed de Sitter spacetime. As a hallmark relation owing to a unique feature of string theory which relates short distances to long distances, the cosmological constant scale, the Planck scale and the effective TeV-sized particle physics scale must satisfy a see-saw-like formula — precisely the generic prediction of certain stringy cosmic brane type models.


Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 214
Author(s):  
Colin Froggatt ◽  
Holger Nielsen ◽  
Roman Nevzorov ◽  
Anthony Thomas

The extrapolation of couplings up to the Planck scale within the standard model (SM) indicates that the Higgs effective potential can have two almost degenerate vacua, which were predicted by the multiple point principle (MPP). The application of the MPP to ( N = 1 ) supergravity (SUGRA) implies that the SUGRA scalar potential of the hidden sector possesses at least two exactly degenerate minima. The first minimum is associated with the physical phase in which we live. In the second supersymmetric (SUSY) Minkowski vacuum, the local SUSY may be broken dynamically, inducing a tiny vacuum energy density. In this paper, we consider the no-scale-inspired SUGRA model in which the MPP conditions are fulfilled without any extra fine-tuning at the tree-level. Assuming that at high energies, the couplings in both phases are identical, one can estimate the dark energy density in these vacua. Using the two-loop renormalization group (RG) equations, we find that the measured value of the cosmological constant can be reproduced if the SUSY breaking scale M S in the physical phase is of the order of 100 TeV. The scenario with the Planck scale SUSY breaking is also discussed.


Sign in / Sign up

Export Citation Format

Share Document