scholarly journals Matter-antimatter asymmetry and non-inertial effects

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
V. M. G. Silveira ◽  
C. A. Z. Vasconcellos ◽  
E. G. S. Luna ◽  
D. Hadjimichef

Abstract We investigate non-inertial effects on CP-violating processes using a model, based on the framework of quantum field theory in curved spacetimes, devised to account for the decay of accelerated particles. We show that the CP violation parameter for the decay of accelerated kaons into two pions decreases very slightly as very high accelerations are achieved, implying decreased asymmetry between matter and antimatter in this regime. We discuss the relationship between these results and cosmological processes surrounding matter-antimatter asymmetry and argue that, due to the connection between non-inertial and thermal phenomena established by the Unruh effect, this kind of computation may prove useful in furthering the understanding of thermodynamical effects in curved spacetimes.

Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 844
Author(s):  
Ben Maybee ◽  
Daniel Hodgson ◽  
Almut Beige ◽  
Robert Purdy

Recently, Bennett et al. (Eur. J. Phys. 37:014001, 2016) presented a physically-motivated and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes. Working within the standard assumptions of quantum field theory and only postulating the physicality of the photon, we derive the Hamiltonian, H ^ , and the electric and magnetic field observables, E ^ and B ^ , respectively, without having to invoke a specific gauge. As an example, we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler space, and demonstrate consistency with other field quantisation schemes by reproducing the Unruh effect.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843008 ◽  
Author(s):  
Gabriel Cozzella ◽  
André G. S. Landulfo ◽  
George E. A. Matsas ◽  
Daniel A. T. Vanzella

The Unruh effect is essential to keep the consistency of quantum field theory in inertial and uniformly accelerated frames. Thus, the Unruh effect must be considered as well-tested as quantum field theory itself. In spite of it, it would be nice to realize an experiment whose output could be directly interpreted in terms of the Unruh effect. This is not easy because the linear acceleration needed to reach a temperature of 1[Formula: see text]K is of order [Formula: see text]. We discuss here a conceptually simple experiment reachable under present technology, which may accomplish this goal. The inspiration for this proposal can be traced back to Atsushi Higuchi’s Ph.D. thesis, which makes it particularly suitable to pay tribute to him on occasion of his [Formula: see text]th anniversary.


2003 ◽  
Vol 70 (1) ◽  
pp. 164-202 ◽  
Author(s):  
Aristidis Arageorgis ◽  
John Earman ◽  
Laura Ruetsche

Sign in / Sign up

Export Citation Format

Share Document