scholarly journals Coulomb branch operators and mirror symmetry in three dimensions

2018 ◽  
Vol 2018 (4) ◽  
Author(s):  
Mykola Dedushenko ◽  
Yale Fan ◽  
Silviu S. Pufu ◽  
Ran Yacoby
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Emanuele Beratto ◽  
Simone Giacomelli ◽  
Noppadol Mekareeya ◽  
Matteo Sacchi

Abstract Mirror symmetry has proven to be a powerful tool to study several properties of higher dimensional superconformal field theories upon compactification to three dimensions. We propose a quiver description for the mirror theories of the circle reduction of twisted A2N theories of class S in four dimensions. Although these quivers bear a resemblance to the star-shaped quivers previously studied in the literature, they contain unitary, symplectic and special orthogonal gauge groups, along with hypermultiplets in the fundamental representation. The vacuum moduli spaces of these quiver theories are studied in detail. The Coulomb branch Hilbert series of the mirror theory can be matched with that of the Higgs branch of the corresponding four dimensional theory, providing a non-trivial check of our proposal. Moreover various deformations by mass and Fayet-Iliopoulos terms of such quiver theories are investigated. The fact that several of them flow to expected theories also gives another strong support for the proposal. Utilising the mirror quiver description, we discover a new supersymmetry enhancement renormalisation group flow.


2018 ◽  
Vol 15 (148) ◽  
pp. 20180454
Author(s):  
Murat Erkurt

The development of form in an embryo is the result of a series of topological and informational symmetry breakings. We introduce the vector–reaction–diffusion–drift (VRDD) system where the limit cycle of spatial dynamics is morphogen concentrations with Dirac delta-type distributions. This is fundamentally different from the Turing reaction–diffusion system, as VRDD generates system-wide broken symmetry. We developed ‘fundamental forms’ from spherical blastula with a single organizing axis (rotational symmetry), double axis (mirror symmetry) and triple axis (no symmetry operator in three dimensions). We then introduced dynamics for cell differentiation, where genetic regulatory states are modelled as a finite-state machine (FSM). The state switching of an FSM is based on local morphogen concentrations as epigenetic information that changes dynamically. We grow complicated forms hierarchically in spatial subdomains using the FSM model coupled with the VRDD system. Using our integrated simulation model with four layers (topological, physical, chemical and regulatory), we generated life-like forms such as hydra. Genotype–phenotype mapping was investigated with continuous and jump mutations. Our study can have applications in morphogenetic engineering, soft robotics and biomimetic design.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Marieke van Beest ◽  
Simone Giacomelli

Abstract We describe how the geometry of the Higgs branch of 5d superconformal field theories is transformed under movement along the extended Coulomb branch. Working directly with the (unitary) magnetic quiver, we demonstrate a correspondence between Fayet-Iliopoulos deformations in 3d and 5d mass deformations. When the Higgs branch has multiple cones, characterised by a collection of magnetic quivers, the mirror map is not globally well-defined, however we are able to utilize the correspondence to establish a local version of mirror symmetry. We give several detailed examples of deformations, including decouplings and weak-coupling limits, in (Dn, Dn) conformal matter theories, TN theory and its parent PN, for which we find new Lagrangian descriptions given by quiver gauge theories with fundamental and anti-symmetric matter.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Luca Griguolo ◽  
Luigi Guerrini ◽  
Itamar Yaakov

Abstract We investigate several aspects of BPS latitude Wilson loops in gauge theories in three dimensions with $$ \mathcal{N} $$ N ≥ 4 supersymmetry. We derive a matrix model for the bosonic latitude Wilson loop in ABJM using supersymmetric localization, and show how to extend the computation to more general Chern-Simons-matter theories. We then define latitude type Wilson and vortex loop operators in theories without Chern-Simons terms, and explore a connection to the recently derived superalgebra defining local Higgs and Coulomb branch operators in these theories. Finally, we identify a BPS loop operator dual to the bosonic latitude Wilson loop which is a novel bound state of Wilson and vortex loops, defined using a worldvolume supersymmetric quantum mechanics.


2014 ◽  
Vol 2014 (6) ◽  
Author(s):  
Anindya Dey ◽  
Amihay Hanany ◽  
Peter Koroteev ◽  
Noppadol Mekareeya

2000 ◽  
Vol 2000 (02) ◽  
pp. 008-008 ◽  
Author(s):  
Martin Gremm ◽  
Emanuel Katz

1997 ◽  
Vol 502 (1-2) ◽  
pp. 107-124 ◽  
Author(s):  
Jan de Boer ◽  
Kentaro Hori ◽  
O.Z. Yaron ◽  
Zheng Yin

2002 ◽  
Vol 2002 (12) ◽  
pp. 044-044 ◽  
Author(s):  
Vadim Borokhov ◽  
Anton Kapustin ◽  
Xinkai Wu

Author(s):  
P.J. Lea ◽  
M.J. Hollenberg

Our current understanding of mitochondrial ultrastructure has been derived primarily from thin sections using transmission electron microscopy (TEM). This information has been extrapolated into three dimensions by artist's impressions (1) or serial sectioning techniques in combination with computer processing (2). The resolution of serial reconstruction methods is limited by section thickness whereas artist's impressions have obvious disadvantages.In contrast, the new techniques of HRSEM used in this study (3) offer the opportunity to view simultaneously both the internal and external structure of mitochondria directly in three dimensions and in detail.The tridimensional ultrastructure of mitochondria from rat hepatocytes, retinal (retinal pigment epithelium), renal (proximal convoluted tubule) and adrenal cortex cells were studied by HRSEM. The specimens were prepared by aldehyde-osmium fixation in combination with freeze cleavage followed by partial extraction of cytosol with a weak solution of osmium tetroxide (4). The specimens were examined with a Hitachi S-570 scanning electron microscope, resolution better than 30 nm, where the secondary electron detector is located in the column directly above the specimen inserted within the objective lens.


Author(s):  
P. E. Batson ◽  
C. H. Chen ◽  
J. Silcox

We wish to report in this paper measurements of the inelastic scattering component due to the collective excitations (plasmons) and single particlehole excitations of the valence electrons in Al. Such scattering contributes to the diffuse electronic scattering seen in electron diffraction patterns and has recently been considered of significance in weak-beam images (see Gai and Howie) . A major problem in the determination of such scattering is the proper correction for multiple scattering. We outline here a procedure which we believe suitably deals with such problems and report the observed single scattering spectrum.In principle, one can use the procedure of Misell and Jones—suitably generalized to three dimensions (qx, qy and #x2206;E)--to derive single scattering profiles. However, such a computation becomes prohibitively large if applied in a brute force fashion since the quasi-elastic scattering (and associated multiple electronic scattering) extends to much larger angles than the multiple electronic scattering on its own.


Sign in / Sign up

Export Citation Format

Share Document