scholarly journals Strong first order electroweak phase transition in 2HDM confronting future Z & Higgs factories

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Wei Su ◽  
Anthony G. Williams ◽  
Mengchao Zhang

Abstract The electroweak phase transition can be made first order by extending the Standard Model (SM) Higgs sector with extra scalars. The same new physics can explain the matter-antimatter asymmetry of the universe by supplying an extra source of CP violation and sphaleron processes. In this paper we study the existence of strong first order electroweak phase transition (SFOEWPT) in the type-I and type-II two Higgs doublet models (2HDM). We focus on how the SFOEWPT requirements constraint the spectrum of non-SM Higgs. Through the parameter space scan, we find that SFOEWPT suggests an upper limit on the masses of heavy Higgs $$ {m}_{A/H/{H}^{\pm }} $$ m A / H / H ± , which is around 1 TeV. High temperature expansion and Higgs vacuum uplifting is used for an analytical understanding of our results. After taking into account the probe ability on SFOEWPT from theoretical constraints, Higgs and Z-pole precision measurements up to the one-loop level at future Higgs & Z factories, sizeable loop corrections require $$ {m}_{A/{H}^{\pm }}-{m}_H $$ m A / H ± − m H ∈ (100, 250) GeV to meet SFOEWPT condition for Type-II 2HDM, and $$ \left|{m}_{A/{H}^{\pm }}-{m}_H\right| $$ m A / H ± − m H ∈ (100, 350) GeV or $$ \left|{m}_A-{m}_{H/{H}^{\pm }}\right| $$ m A − m H / H ± ∈ (100, 350) GeV for Type-I 2HDM.

1993 ◽  
Vol 71 (5-6) ◽  
pp. 227-236 ◽  
Author(s):  
M. E. Carrington

There has been much recent interest in the finite-temperature effective potential of the standard model in the context of the electroweak phase transition. We review the calculation of the effective potential with particular emphasis on the validity of the expansions that are used. The presence of a term that is cubic in the Higgs condensate in the one-loop effective potential appears to indicate a first-order electroweak phase transition. However, in the high-temperature regime, the infrared singularities inherent in massless models produce cubic terms that are of the same order in the coupling. In this paper, we discuss the inclusion of an infinite set of these terms via the ring-diagram summation, and show that the standard model has a first-order phase transition in the weak coupling expansion.


2019 ◽  
Vol 64 (8) ◽  
pp. 710
Author(s):  
P. Minaiev ◽  
V. Skalozub

We investigate the electroweak phase transition (EWPT) in the Minimal (One Higgs doublet) Standard Model (SM) with account for the spontaneous generation of magnetic and chromo-magnetic fields. As it is known, in the SM for the mass of a Higgs boson greater than 75 GeV, this phase transition is of the second order. But, according to Sakharov’s conditions for the formation of the baryon asymmetry in the early Universe, it has to be strongly of the first order. In the Two Higgs doublets SM, there is a parametric space, where the first-order phase transition is realized for the realistic Higgs boson mass mH = 125 GeV. On the other hand, in the hot Universe, the spontaneous magnetization of a plasma had happened. The spontaneously generated (chromo) magnetic fields are temperature-dependent. They influence the EWРT. The color chromomagnetic fields B3 and B8 are created spontaneously in the gluon sector of QCD at a temperature T > Td higher the deconfinement temperature Td. The usual magnetic field H has also to be spontaneously generated. For T close to the TEWPT , these magnetic fields could change the kind of the phase transition.


2019 ◽  
Vol 34 (15) ◽  
pp. 1950073
Author(s):  
Vo Quoc Phong ◽  
Minh Anh Nguyen

Our analysis shows that SM-like electroweak phase transition (EWPT) in the [Formula: see text] (2-2-1) model is a first-order phase transition at the 200 GeV scale (the SM scale). Its strength [Formula: see text] is about 1–2.7 and the masses of new gauge bosons are larger than 1.7 TeV when the second VEV is larger than 535 GeV in a three-stage EWPT scenario and the coupling constant of [Formula: see text] group must be larger than 2. Therefore, this first-order EWPT can be used to fix VEVs and the coupling constant of the gauge group in electroweak models.


2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Sabine Kraml ◽  
Tran Quang Loc ◽  
Dao Thi Nhung ◽  
Le Duc Ninh

Lilith is a public Python library for constraining new physics from Higgs signal strength measurements. We here present version 2.0 of Lilith together with an updated XML database which includes the current ATLAS and CMS Run 2 Higgs results for 36 fb^{-1}−1. Both the code and the database were extended from the ordinary Gaussian approximation employed in Lilith-1.1 to using variable Gaussian and Poisson likelihoods. Moreover, Lilith can now make use of correlation matrices of arbitrary dimension. We provide detailed validations of the implemented experimental results as well as a status of global fits for reduced Higgs couplings, Two-Higgs-doublet models of Type I and Type II, and invisible Higgs decays. Lilith-2.0 is available on GitHub and ready to be used to constrain a wide class of new physics scenarios.


2018 ◽  
Vol 168 ◽  
pp. 05001 ◽  
Author(s):  
Toshinori Matsui

Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3592-3604
Author(s):  
J. M. S. RANA

Electromagnetic duality has been utilized to study the isocolor charge-dyon interactions in Restricted Quantum Chromodynamics (RCD),in terms of current-current correlation (in magnetic gauge)using dielectric and permeability parameters of the associated vacuum. In the state of dyonic superconductivity, it has been shown that the dual propagators behave as 1/k4 (for small k2), which in analogy with superconductivity (dual superconductivity) leads to the confinement of colored fluxes associated with dyonic quarks vide generalized Meissner effect. Based on semi-quantitative analysis of vortex solutions of RCD and by calculating the masses for the massive collective modes of the condensed vacuum, the expressions for the London penetration depth, coherence length and the associated flux energy functions for the type I and type II superconducting media have been obtained. It has further been demonstrated that in the type I medium, vortices tend to coalesce and hence are attractive, while the energy function supports repulsive forces between vortices in the type II superconducting medium. The RCD has been supersymmetrized in N =1 limit and the supersymmetric dyonic solutions have been obtained. In the dyonic background gauge one-loop quantum corrections to the dyonic mass have been calculated and it has been shown that the one-loop quantum corrections lead no change in classical mass of the dyon.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 45
Author(s):  
Arnab Chaudhuri ◽  
Maxim Yu. Khlopov ◽  
Shiladitya Porey

The entropy production scenarios due to the electroweak phase transition (EWPT) in the framework of the minimal extension of standard model, namely the two Higgs doublet model (2HDM), are revisited. The possibility of first order phase transition is discussed. Intense parameter scanning was done with the help of BSMPT, a C++ package. We perform numerical calculations in order to calculate the entropy production with numerous benchmark points.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 275-289
Author(s):  
Arnab Chaudhuri ◽  
Maxim Yu. Khlopov

We revisit the possibility of first order electroweak phase transition (EWPT) in one of the simplest extensions of the Standard Model scalar sector, namely the two-Higgs-doublet model (2HDM). We take into account the ensuing constraints from the electroweak precision tests, Higgs signal strengths and the recent LHC bounds from direct scalar searches. By studying the vacuum transition in 2HDM, we discuss in detail the entropy released in the first order EWPT in various parameter planes of a 2HDM.


Sign in / Sign up

Export Citation Format

Share Document