scholarly journals Neural-network-driven proton decay sensitivity in the p → $$ \overline{\nu} $$K+ channel using large liquid argon time projection chambers

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
C. Alt ◽  
B. Radics ◽  
A. Rubbia

Abstract We report on an updated sensitivity for proton decay via p → $$ \overline{\nu} $$ ν ¯ K+ at large, dual phase liquid argon time projection chambers (LAr TPCs). Our work builds on a previous study in which several nucleon decay modes have been simulated and analyzed [1]. At the time several assumptions were needed to be made on the detector and the backgrounds. Since then, the community has made progress in defining these, and the computing power available enables us to fully simulate and reconstruct large samples in order to perform a better estimate of the sensitivity to proton decay. In this work, we examine the benchmark channel p → $$ \overline{\nu} $$ ν ¯ K+, which was previously found to be one of the cleanest channels. Using an improved neutrino event generator and a fully simulated LAr TPC detector response combined with a dedicated neural network for kaon identification, we demonstrate that a lifetime sensitivity of τ /Br (p → $$ \overline{\nu} $$ ν ¯ K+) > 7 × 1034 years at 90% confidence level can be reached at an exposure of 1 megaton · year in quasi-background-free conditions, confirming the superiority of the LAr TPC over other technologies to address the challenging proton decay modes.

Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


2021 ◽  
Vol 251 ◽  
pp. 03054 ◽  
Author(s):  
Jeremy Hewes ◽  
Adam Aurisano ◽  
Giuseppe Cerati ◽  
Jim Kowalkowski ◽  
Claire Lee ◽  
...  

This paper presents a graph neural network (GNN) technique for low-level reconstruction of neutrino interactions in a Liquid Argon Time Projection Chamber (LArTPC). GNNs are still a relatively novel technique, and have shown great promise for similar reconstruction tasks in the LHC. In this paper, a multihead attention message passing network is used to classify the relationship between detector hits by labelling graph edges, determining whether hits were produced by the same underlying particle, and if so, the particle type. The trained model is 84% accurate overall, and performs best on the EM shower and muon track classes. The model’s strengths and weaknesses are discussed, and plans for developing this technique further are summarised.


2018 ◽  
Vol 13 (11) ◽  
pp. P11003-P11003 ◽  
Author(s):  
B. Aimard ◽  
Ch. Alt ◽  
J. Asaadi ◽  
M. Auger ◽  
V. Aushev ◽  
...  

2021 ◽  
Vol 16 (01) ◽  
pp. P01036-P01036
Author(s):  
H.W. Yu ◽  
M. Bishai ◽  
W.Q. Gu ◽  
M.F. Lin ◽  
X. Qian ◽  
...  

2019 ◽  
Vol 99 (1) ◽  
Author(s):  
R. Acciarri ◽  
C. Adams ◽  
J. Asaadi ◽  
B. Baller ◽  
T. Bolton ◽  
...  

Instruments ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 35
Author(s):  
Adam Lowe ◽  
Krishanu Majumdar ◽  
Konstantinos Mavrokoridis ◽  
Barney Philippou ◽  
Adam Roberts ◽  
...  

The ARIADNE Experiment, utilising a 1-ton dual-phase Liquid Argon Time Projection Chamber (LArTPC), aims to develop and mature optical readout technology for large scale LAr detectors. This paper describes the characterisation, using cosmic muons, of a Timepix3-based camera mounted on the ARIADNE detector. The raw data from the camera are natively 3D and zero suppressed, allowing for straightforward event reconstruction, and a gallery of reconstructed LAr interaction events is presented. Taking advantage of the 1.6 ns time resolution of the readout, the drift velocity of the ionised electrons in LAr was determined to be 1.608 ± 0.005 mm/μs at 0.54 kV/cm. Energy calibration and resolution were determined using through-going muons. The energy resolution was found to be approximately 11% for the presented dataset. A preliminary study of the energy deposition (dEdX) as a function of distance has also been performed for two stopping muon events, and comparison to GEANT4 simulation shows good agreement. The results presented demonstrate the capabilities of this technology, and its application is discussed in the context of the future kiloton-scale dual-phase LAr detectors that will be used in the DUNE programme.


2018 ◽  
Vol 1143 ◽  
pp. 012003
Author(s):  
H da Motta ◽  
A A Machado ◽  
L Paulucci ◽  
E Segreto ◽  
A Fauth ◽  
...  

2020 ◽  
Vol 102 (9) ◽  
Author(s):  
W. Castiglioni ◽  
W. Foreman ◽  
B. R. Littlejohn ◽  
M. Malaker ◽  
I. Lepetic ◽  
...  

2020 ◽  
Vol 15 (03) ◽  
pp. C03057-C03057
Author(s):  
L. Romero ◽  
J.M. Cela ◽  
E. Sanchez Garcia ◽  
M. Daniel ◽  
M. de Prado

Sign in / Sign up

Export Citation Format

Share Document