scholarly journals Optical Readout of the ARIADNE LArTPC Using a Timepix3-Based Camera

Instruments ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 35
Author(s):  
Adam Lowe ◽  
Krishanu Majumdar ◽  
Konstantinos Mavrokoridis ◽  
Barney Philippou ◽  
Adam Roberts ◽  
...  

The ARIADNE Experiment, utilising a 1-ton dual-phase Liquid Argon Time Projection Chamber (LArTPC), aims to develop and mature optical readout technology for large scale LAr detectors. This paper describes the characterisation, using cosmic muons, of a Timepix3-based camera mounted on the ARIADNE detector. The raw data from the camera are natively 3D and zero suppressed, allowing for straightforward event reconstruction, and a gallery of reconstructed LAr interaction events is presented. Taking advantage of the 1.6 ns time resolution of the readout, the drift velocity of the ionised electrons in LAr was determined to be 1.608 ± 0.005 mm/μs at 0.54 kV/cm. Energy calibration and resolution were determined using through-going muons. The energy resolution was found to be approximately 11% for the presented dataset. A preliminary study of the energy deposition (dEdX) as a function of distance has also been performed for two stopping muon events, and comparison to GEANT4 simulation shows good agreement. The results presented demonstrate the capabilities of this technology, and its application is discussed in the context of the future kiloton-scale dual-phase LAr detectors that will be used in the DUNE programme.

2018 ◽  
Vol 13 (11) ◽  
pp. P11003-P11003 ◽  
Author(s):  
B. Aimard ◽  
Ch. Alt ◽  
J. Asaadi ◽  
M. Auger ◽  
V. Aushev ◽  
...  

Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


2021 ◽  
Vol 16 (08) ◽  
pp. P08063
Author(s):  
B. Aimard ◽  
L. Aizawa ◽  
C. Alt ◽  
J. Asaadi ◽  
M. Auger ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 01031
Author(s):  
S. Sanfilippo ◽  
P. Agnes ◽  
M. Arba ◽  
M. Ave ◽  
E. Baracchini ◽  
...  

Directional sensitivity to nuclear recoils could provide a smoking gun for a possible discovery of dark matter in the form of WIMPs. A hint of directional dependence of the response of a dual-phase liquid argon Time Projection Chamber was found in the SCENE experiment. Given the potential importance of such a capability in the frame work of dark matter searches, a new dedicated experiment, ReD (Recoil Directionality), was designed in the framework of the DarkSide Collaboration, in order to scrutinize this hint. This contribution will describe the performance of the detectors achieved during the first test-beam, the current status of ReD and the perspectives for physics measurements during the forthcoming beam-time.


Author(s):  
Peter J. Doe ◽  
Richard C. Allen ◽  
Steven D. Biller ◽  
Gerhard Bühler ◽  
Wayne A. Johnson ◽  
...  

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Diego Garcia-Gamez ◽  
Patrick Green ◽  
Andrzej M. Szelc

AbstractLiquid argon is being employed as a detector medium in neutrino physics and Dark Matter searches. A recent push to expand the applications of scintillation light in Liquid Argon Time Projection Chamber neutrino detectors has necessitated the development of advanced methods of simulating this light. The presently available methods tend to be prohibitively slow or imprecise due to the combination of detector size and the amount of energy deposited by neutrino beam interactions. In this work we present a semi-analytical model to predict the quantity of argon scintillation light observed by a light detector with a precision better than $$10\%$$ 10 % , based only on the relative positions between the scintillation and light detector. We also provide a method to predict the distribution of arrival times of these photons accounting for propagation effects. Additionally, we present an equivalent model to predict the number of photons and their arrival times in the case of a wavelength-shifting, highly-reflective layer being present on the detector cathode. Our proposed method can be used to simulate light propagation in large-scale liquid argon detectors such as DUNE or SBND, and could also be applied to other detector mediums such as liquid xenon or xenon-doped liquid argon.


2014 ◽  
Vol 9 (02) ◽  
pp. P02006-P02006 ◽  
Author(s):  
K Mavrokoridis ◽  
F Ball ◽  
J Carroll ◽  
M Lazos ◽  
K J McCormick ◽  
...  

2020 ◽  
Vol 15 (05) ◽  
pp. C05064-C05064
Author(s):  
E. Chardonnet
Keyword(s):  

2013 ◽  
Vol 53 (A) ◽  
pp. 776-781
Author(s):  
Christian Farnese

Liquid Argon Time Projection Chambers are very promising detectors for neutrino and astroparticle physics due to their high granularity, good energy resolution and 3D imaging, allowing for a precise event reconstruction. ICARUS T600 is the largest liquid Argon (LAr) TPC detector ever built (~600 ton LAr mass) and is presently operating underground at the LNGS laboratory. This detector, internationally considered as the milestone towards the realization of the next generation of massive detectors (~tens of ktons) for neutrino and rare event physics, has been smoothly running since summer 2010, collecting data with the CNGS beam and with cosmics. The status of this detector will be shortly described together with the intent to adopt the LAr TPC technology at CERN as a possible solution to the sterile neutrino puzzle.


Sign in / Sign up

Export Citation Format

Share Document