scholarly journals On partition functions of refined Chern-Simons theories on S3

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M.Y. Avetisyan ◽  
R.L. Mkrtchyan

Abstract We present a new expression for the partition function of the refined Chern-Simons theory on S3 with an arbitrary gauge group, which is explicitly equal to 1 when the coupling constant is zero. Using this form of the partition function we show that the previously known Krefl-Schwarz representation of the partition function of the refined Chern-Simons theory on S3 can be generalized to all simply laced algebras.For all non-simply laced gauge algebras, we derive similar representations of that partition function, which makes it possible to transform it into a product of multiple sine functions aiming at the further establishment of duality with the refined topological strings.

2004 ◽  
Vol 19 (18) ◽  
pp. 1365-1378 ◽  
Author(s):  
M. TIERZ

We study the properties of matrix models with soft confining potentials. Their precise mathematical characterization is that their weight function is not determined by its moments. We mainly rely on simple considerations based on orthogonal polynomials and the moment problem. In addition, some of these models are equivalent, by a simple mapping, to matrix models that appear in Chern–Simons theory. The models can be solved with q deformed orthogonal polynomials (Stieltjes–Wigert polynomials), and the deformation parameter turns out to be the usual q parameter in Chern–Simons theory. In this way, we give a matrix model computation of the Chern–Simons partition function on S3 and show that there are infinitely many matrix models with this partition function.


1992 ◽  
Vol 07 (23) ◽  
pp. 2065-2076 ◽  
Author(s):  
S. KALYANA RAMA ◽  
SIDDHARTHA SEN

We show how the Turaev-Viro invariant, which is closely related to the partition function of three-dimensional gravity, can be understood within the framework of SU(2) Chern-Simons theory. We also show that, for S3 and RP3, this invariant is equal to the absolute value square of their respective partition functions in SU(2) Chern-Simons theory and give a method of evaluating the latter in a closed form for a class of 3D manifolds, thus in effect obtaining the partition function of three-dimensional gravity for these manifolds. By interpreting the triangulation of a manifold as a graph consisting of crossings and vertices with three lines we also describe a new invariant for certain class of graphs.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Masazumi Honda ◽  
Naotaka Kubo

Abstract It has been conjectured that duality cascade occurs in the $$ \mathcal{N} $$ N = 3 supersymmetric Yang-Mills Chern-Simons theory with the gauge group U(N)k × U(N + M)−k coupled to two bi-fundamental hypermultiplets. The brane picture suggests that this duality cascade can be generalized to a class of 3d $$ \mathcal{N} $$ N = 3 supersymmetric quiver gauge theories coming from so-called Hanany-Witten type brane configurations. In this paper we perform non-perturbative tests of the duality cascades using supersymmetry localization. We focus on S3 partition functions and prove predictions from the duality cascades. We also discuss that our result can be applied to generate new dualities for more general theories which include less supersymmetric theories and theories without brane constructions.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Viraj Meruliya ◽  
Sunil Mukhi ◽  
Palash Singh

Abstract We investigate the Poincaré series approach to computing 3d gravity partition functions dual to Rational CFT. For a single genus-1 boundary, we show that for certain infinite sets of levels, the SU(2)k WZW models provide unitary examples for which the Poincaré series is a positive linear combination of two modular-invariant partition functions. This supports the interpretation that the bulk gravity theory (a topological Chern-Simons theory in this case) is dual to an average of distinct CFT’s sharing the same Kac-Moody algebra. We compute the weights of this average for all seed primaries and all relevant values of k. We then study other WZW models, notably SU(N)1 and SU(3)k, and find that each class presents rather different features. Finally we consider multiple genus-1 boundaries, where we find a class of seed functions for the Poincaré sum that reproduces both disconnected and connected contributions — the latter corresponding to analogues of 3-manifold “wormholes” — such that the expected average is correctly reproduced.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Leonardo Santilli ◽  
Miguel Tierz

Abstract We study several quiver Chern-Simons-matter theories on the three-sphere, combining the matrix model formulation with a systematic use of Mordell’s integral, computing partition functions and checking dualities. We also consider Wilson loops in ABJ(M) theories, distinguishing between typical (long) and atypical (short) representations and focusing on the former. Using the Berele-Regev factorization of supersymmetric Schur polynomials, we express the expectation value of the Wilson loops in terms of sums of observables of two factorized copies of U(N ) pure Chern-Simons theory on the sphere. Then, we use the Cauchy identity to study the partition functions of a number of quiver Chern-Simons-matter models and the result is interpreted as a perturbative expansion in the parameters tj = −e2πmj , where mj are the masses. Through the paper, we incorporate different generalizations, such as deformations by real masses and/or Fayet-Iliopoulos parameters, the consideration of a Romans mass in the gravity dual, and adjoint matter.


1998 ◽  
Vol 13 (07) ◽  
pp. 511-525
Author(s):  
J. L. LÓPEZ

The universality of radiative corrections to the gauge coupling constant k of the Chern–Simons theory is studied in a very general regularization scheme in the background gauge formalism. The effective constant k eff induced by radiative corrections can be any real number depending on the balance between the ultraviolet behavior of scalar and pseudoscalar terms in the regularized action. This ambiguity of the effective action is related to the ambiguity in the parity anomaly of three-dimensional Dirac fermions. The effective action also contains a non-analytic term in the gauge field with the same coefficient and opposite gauge transformation in such a way that the effective action is gauge-invariant. The results open the possibility of a connection with non-rational two-dimensional conformal theories for non-integer values of k eff .


2017 ◽  
Vol 114 (51) ◽  
pp. 13418-13423 ◽  
Author(s):  
André G. Henriques

We answer the questions, “What does Chern–Simons theory assign to a point?” and “What kind of mathematical object does Chern–Simons theory assign to a point?” Our answer to the first question is representations of the based loop group. More precisely, we identify a certain class of projective unitary representations of the based loop group 𝛀G. We define the fusion product of such representations, and we prove that, modulo certain conjectures, the Drinfel’d center of that representation category of 𝛀G is equivalent to the category of positive energy representations of the free loop group LG.† The abovementioned conjectures are known to hold when the gauge group is abelian or of type A1. Our answer to the second question is bicommutant categories. The latter are higher categorical analogs of von Neumann algebras: They are tensor categories that are equivalent to their bicommutant inside Bim(R), the category of bimodules over a hyperfinite 𝐼𝐼𝐼1 factor. We prove that, modulo certain conjectures, the category of representations of the based loop group is a bicommutant category. The relevant conjectures are known to hold when the gauge group is abelian or of type An.


Sign in / Sign up

Export Citation Format

Share Document