scholarly journals Infrared renormalons in kinematic distributions for hadron collider processes

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Silvia Ferrario Ravasio ◽  
Giovanni Limatola ◽  
Paolo Nason

Abstract Infrared renormalons in Quantum Chromodynamics are associated with non-perturbative corrections to short distance observables. Linear renormalons, i.e. such that the associated non-perturbative corrections scale like one inverse power of the hard scale, can affect at a non-negligible level even the very high-energy phenomena studied at the Large Hadron Collider. Using an Abelian model, we study the presence of linear renormalons in the transverse momentum distribution of a neutral vector boson Z produced in hadronic collisions. We consider a process where the Z transverse momentum is balanced by a sizable recoil against a coloured final state particle. One may worry that such a colour configuration, not being azimuthally symmetric, could generate unbalanced soft radiation, associated in turn with linear infrared renormalons affecting the transverse momentum distribution of the vector boson. We performed a numerical calculation of the renormalon effects for this process in the so-called large b0 limit. We found no evidence of linear renormalons in the transverse momentum distribution of the Z in the large transverse-momentum region, irrespective of rapidity cuts.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Hai-Fu Zhao ◽  
Bao-Chun Li ◽  
Hong-Wei Dong

The distribution characteristic of final-state particles is one of the significant parts in high-energy nuclear collisions. The transverse momentum distribution of charged particles carries essential evolution information about the collision system. The Tsallis statistics is used to investigate the transverse momentum distribution of charged particles produced in Xe-Xe collisions at sNN=5.44 TeV. On this basis, we reproduce the nuclear modification factor of the charged particles. The calculated results agree approximately with the experimental data measured by the ALICE Collaboration.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Fu-Hu Liu ◽  
Ya-Hui Chen ◽  
Hua-Rong Wei ◽  
Bao-Chun Li

Transverse momentum distributions of final-state particles produced in soft process in proton-proton (pp) and nucleus-nucleus (AA) collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies are studied by using a multisource thermal model. Each source in the model is treated as a relativistic and quantum ideal gas. Because the quantum effect can be neglected in investigation on the transverse momentum distribution in high energy collisions, we consider only the relativistic effect. The concerned distribution is finally described by the Boltzmann or two-component Boltzmann distribution. Our modeling results are in agreement with available experimental data.


2016 ◽  
Vol 40 ◽  
pp. 1660014 ◽  
Author(s):  
Daniël Boer

Transverse momentum dependent parton distributions (TMDs) appear in many scattering processes at high energy, from the semi-inclusive DIS experiments at a few GeV to the Higgs transverse momentum distribution at the LHC. Predictions for TMD observables crucially depend on TMD factorization, which in turn determines the TMD evolution of the observables with energy. In this contribution to SPIN2014 TMD factorization is outlined, including a discussion of the treatment of the nonperturbative region, followed by a summary of results on TMD evolution, mostly applied to azimuthal asymmetries.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Stefano Forte ◽  
Giovanni Ridolfi ◽  
Simone Rota

Abstract We derive a general expression for the threshold resummation of transverse momentum distributions for processes with a colorless final state, by suitably generalizing the renormalization-group based approach to threshold resummation previously pursued by two of us. The ensuing expression holds to all logarithmic orders, and it can be used to extend available results in the literature, which only hold up to the next-to-leading log (NLL) level. We check agreement of our result with the existing NLL result, as well as against the known fixed next-to-leading order results for the Higgs transverse momentum distribution in gluon fusion, and we provide explicit expressions at the next-to-next-to-leading log level.


Sign in / Sign up

Export Citation Format

Share Document