scholarly journals 5d SCFTs from decoupling and gluing

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Fabio Apruzzi ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract We systematically analyse 5d superconformal field theories (SCFTs) obtained by dimensional reduction from 6d $$ \mathcal{N} $$ N = (1, 0) SCFTs. Such theories have a realization as M-theory on a singular Calabi-Yau threefold, from which we determine the so-called combined fiber diagrams (CFD) introduced in [1–3]. The CFDs are graphs that encode the superconformal flavor symmetry, BPS states, low energy descriptions, as well as descendants upon flavor matter decoupling. To obtain a 5d SCFT from 6d, there are two approaches: the first is to consider a circle-reduction combined with mass deformations. The second is to circle-reduce and decouple an entire gauge sector from the theory. The former is applicable e.g. for very Higgsable theories, whereas the latter is required to obtain a 5d SCFT from a non-very Higgsable 6d theory. In the M-theory realization the latter case corresponds to decompactification of a set of compact surfaces in the Calabi-Yau threefold. To exemplify this we consider the 5d SCFTs that descend from non-Higgsable clusters and non-minimal conformal matter theories. Finally, inspired by the quiver structure of 6d theories, we propose a gluing construction for 5d SCFTs from building blocks and their CFDs.

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Lakshya Bhardwaj

Abstract A large class of 5d superconformal field theories (SCFTs) can be constructed by integrating out BPS particles from 6d SCFTs compactified on a circle. We describe a general method for extracting the flavor symmetry of any 5d SCFT lying in this class. For this purpose, we utilize the geometric engineering of 5d$$ \mathcal{N} $$ N = 1 theories in M-theory, where the flavor symmetry is encoded in a collection of non-compact surfaces.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ibrahima Bah ◽  
Federico Bonetti ◽  
Ruben Minasian ◽  
Emily Nardoni

Abstract We initiate a study of the holographic duals of a class of four-dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories that are engineered by wrapping M5-branes on a sphere with an irregular puncture. These notably include the strongly-coupled field theories of Argyres-Douglas type. Our solutions are obtained in 7d gauged supergravity, where they take the form of a warped product of AdS5 and a “half-spindle.” The irregular puncture is modeled by a localized M5-brane source in the internal space of the gravity duals. Our solutions feature a realization of supersymmetry that is distinct from the usual topological twist, as well as an interesting Stückelberg mechanism involving the gauge field associated to a generator of the isometry algebra of the internal space. We check the proposed duality by computing the holographic central charge, the flavor symmetry central charge, and the dimensions of various supersymmetric probe M2-branes, and matching these with the dual Argyres-Douglas field theories. Furthermore, we compute the large-N ’t Hooft anomalies of the field theories using anomaly inflow methods in M-theory, and find perfect agreement with the proposed duality.


2019 ◽  
Vol 6 (5) ◽  
Author(s):  
Cyril Closset ◽  
Michele Del Zotto ◽  
Vivek Saxena

We revisit the correspondence between Calabi-Yau (CY) threefold isolated singularities \mathbf{X}𝐗 and five-dimensional superconformal field theories (SCFTs), which arise at low energy in M-theory on the space-time transverse to \mathbf{X}𝐗. Focussing on the case of toric CY singularities, we analyze the “gauge-theory phases” of the SCFT by exploiting fiberwise M-theory/type IIA duality. In this setup, the low-energy gauge group simply arises on stacks of coincident D6-branes wrapping 2-cycles in some ALE space of type A_{M-1}AM−1 fibered over a real line, and the map between the Kähler parameters of \mathbf{X}𝐗 and the Coulomb branch parameters of the field theory (masses and VEVs) can be read off systematically. Different type IIA “reductions” give rise to different gauge theory phases, whose existence depends on the particular (partial) resolutions of the isolated singularity \mathbf{X}𝐗. We also comment on the case of non-isolated toric singularities. Incidentally, we propose a slightly modified expression for the Coulomb-branch prepotential of 5d \mathcal{N}=1𝒩=1 gauge theories.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Marieke van Beest ◽  
Sebastjan Cizel ◽  
Sakura Schafer-Nameki ◽  
James Sparks

We study the holographic dual to cc-extremization for 2d (0,2)(0,2) superconformal field theories (SCFTs) that have an AdS_33 dual realized in Type IIB with varying axio-dilaton, i.e. F-theory. M/F-duality implies that such AdS_33 solutions can be mapped to AdS_22 solutions in M-theory, which are holographically dual to superconformal quantum mechanics (SCQM), obtained by dimensional reduction of the 2d SCFTs. We analyze the corresponding map between holographic cc-extremization in F-theory and \mathcal{I}ℐ-extremization in M-theory, where in general the latter receives corrections relative to the F-theory result.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Cyril Closset ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Five- and four-dimensional superconformal field theories with eight supercharges arise from canonical threefold singularities in M-theory and Type IIB string theory, respectively. We study their Coulomb and Higgs branches using crepant resolutions and deformations of the singularities. We propose a relation between the resulting moduli spaces, by compactifying the theories to 3d, followed by 3d $$ \mathcal{N} $$ N = 4 mirror symmetry and an S-type gauging of an abelian flavor symmetry. In particular, we use this correspondence to determine the Higgs branch of some 5d SCFTs and their magnetic quivers from the geometry. As an application of the general framework, we observe that singularities that engineer Argyres-Douglas theories in Type IIB also give rise to rank-0 5d SCFTs in M-theory. We also compute the higher-form symmetries of the 4d and 5d SCFTs, including the one-form symmetries of generalized Argyres-Douglas theories of type (G, G′).


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract 5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in [1], which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Andreas P. Braun ◽  
Jin Chen ◽  
Babak Haghighat ◽  
Marcus Sperling ◽  
Shuhang Yang

Abstract We study circle compactifications of 6d superconformal field theories giving rise to 5d rank 1 and rank 2 Kaluza-Klein theories. We realise the resulting theories as M-theory compactifications on local Calabi-Yau 3-folds and match the prepotentials from geometry and field theory. One novelty in our approach is that we include explicit dependence on bare gauge couplings and mass parameters in the description which in turn leads to an accurate parametrisation of the prepotential including all parameters of the field theory. We find that the resulting geometries admit “fibre-base” duality which relates their six-dimensional origin with the purely five-dimensional quantum field theory interpretation. The fibre-base duality is realised simply by swapping base and fibre curves of compact surfaces in the local Calabi-Yau which can be viewed as the total space of the anti-canonical bundle over such surfaces. Our results show that such swappings precisely occur for surfaces with a zero self-intersection of the base curve and result in an exchange of the 6d and 5d pictures.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Lakshya Bhardwaj ◽  
Patrick Jefferson ◽  
Hee-Cheol Kim ◽  
Houri-Christina Tarazi ◽  
Cumrun Vafa

Abstract We study 6d superconformal field theories (SCFTs) compactified on a circle with arbitrary twists. The theories obtained after compactification, often referred to as 5d Kaluza-Klein (KK) theories, can be viewed as starting points for RG flows to 5d SCFTs. According to a conjecture, all 5d SCFTs can be obtained in this fashion. We compute the Coulomb branch prepotential for all 5d KK theories obtainable in this manner and associate to these theories a smooth local genus one fibered Calabi-Yau threefold in which is encoded information about all possible RG flows to 5d SCFTs. These Calabi-Yau threefolds provide hitherto unknown M-theory duals of F-theory configurations compactified on a circle with twists. For certain exceptional KK theories that do not admit a standard geometric description we propose an algebraic description that appears to retain the properties of the local Calabi-Yau threefolds necessary to determine RG flows to 5d SCFTs, along with other relevant physical data.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Markus Dierigl ◽  
Paul-Konstantin Oehlmann ◽  
Fabian Ruehle

Abstract Six-dimensional $$ \mathcal{N} $$ N = (1, 0) superconformal field theories can be engineered geometrically via F-theory on elliptically-fibered Calabi-Yau 3-folds. We include torsional sections in the geometry, which lead to a finite Mordell-Weil group. This allows us to identify the full non-Abelian group structure rather than just the algebra. The presence of torsion also modifies the center of the symmetry groups and the matter representations that can appear. This in turn affects the tensor branch of these theories. We analyze this change for a large class of superconformal theories with torsion and explicitly construct their tensor branches. Finally, we elaborate on the connection to the dual heterotic and M-theory description, in which our configurations are interpreted as generalizations of discrete holonomy instantons.


Sign in / Sign up

Export Citation Format

Share Document