scholarly journals Resummation of non-global logarithms in cross sections with massive particles

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Marcel Balsiger ◽  
Thomas Becher ◽  
Andrea Ferroglia

Abstract A factorization formalism for jet processes involving massive colored particles such as the top quark is developed, extending earlier results for the massless case. The factorization of soft emissions from the underlying hard process is implemented in an effective field theory framework, which forms the basis for the resummation of large logarithms. The renormalization group evolution giving rise to non-global logarithms is implemented into a parton shower code in the large-Nc limit. After a comparison of the massive and massless radiation patterns, the cross section for $$ t\overline{t} $$ t t ¯ production with a veto on additional central jet activity is computed, taking into account radiation both from the production and the decay of the top quarks. The resummation of the leading logarithms leads to an improved description of ATLAS measurements at $$ \sqrt{s} $$ s = 7 TeV.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
...  

Abstract Events containing one or more top quarks produced with additional prompt leptons are used to search for new physics within the framework of an effective field theory (EFT). The data correspond to an integrated luminosity of 41.5 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, collected by the CMS experiment in 2017. The selected events are required to have either two leptons with the same charge or more than two leptons; jets, including identified bottom quark jets, are also required, and the selected events are divided into categories based on the multiplicities of these objects. Sixteen dimension-six operators that can affect processes involving top quarks produced with additional charged leptons are considered in this analysis. Constructed to target EFT effects directly, the analysis applies a novel approach in which the observed yields are parameterized in terms of the Wilson coefficients (WCs) of the EFT operators. A simultaneous fit of the 16 WCs to the data is performed and two standard deviation confidence intervals for the WCs are extracted; the standard model expectations for the WC values are within these intervals for all of the WCs probed.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Javier Fuentes-Martín ◽  
Pedro Ruiz-Femenía ◽  
Avelino Vicente ◽  
Javier Virto

Abstract is a package for the handling of the standard model effective field theory (SMEFT) and the low-energy effective field theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). also performs weak basis transformations, and implements the full one-loop Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.


2009 ◽  
Vol 24 (11n13) ◽  
pp. 931-936 ◽  
Author(s):  
S. PASTORE ◽  
R. SCHIAVILLA ◽  
J. L. GOITY

Nuclear electromagnetic currents derived in a chiral-effective-field-theory framework including explicit nucleons, Δ isobars, and pions up to N2LO, i.e. ignoring loop corrections, are used in a study of neutron radiative captures on protons and deuterons at thermal energies, and of A=2 and 3 nuclei magnetic moments. With the strengths of the Δ-excitation currents determined to reproduce the n-p cross section and isovector combination of the trinucleon magnetic moments, we find that the cross section and photon circular polarization parameter, measured respectively in n-d and [Formula: see text] processes, are significantly underpredicted by theory.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
◽  
N. Tonon ◽  
H. Aarup Petersen ◽  
M. Aldaya Martin ◽  
P. Asmuss ◽  
...  

Abstract A search for new top quark interactions is performed within the framework of an effective field theory using the associated production of either one or two top quarks with a Z boson in multilepton final states. The data sample corresponds to an integrated luminosity of 138 fb−1 of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV collected by the CMS experiment at the LHC. Five dimension-six operators modifying the electroweak interactions of the top quark are considered. Novel machine-learning techniques are used to enhance the sensitivity to effects arising from these operators. Distributions used for the signal extraction are parameterized in terms of Wilson coefficients describing the interaction strengths of the operators. All five Wilson coefficients are simultaneously fit to data and 95% confidence level intervals are computed. All results are consistent with the SM expectations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Minyuan Jiang ◽  
Teng Ma ◽  
Jing Shu

Abstract We describe the on-shell method to derive the Renormalization Group (RG) evolution of Wilson coefficients of high dimensional operators at one loop, which is a necessary part in the on-shell construction of the Standard Model Effective Field Theory (SMEFT), and exceptionally efficient based on the amplitude basis in hand. The UV divergence is obtained by firstly calculating the coefficients of scalar bubble integrals by unitary cuts, then subtracting the IR divergence in the massless bubbles, which can be easily read from the collinear factors we obtained for the Standard Model fields. Examples of deriving the anomalous dimensions at dimension six are presented in a pedagogical manner. We also give the results of contributions from the dimension-8 H4D4 operators to the running of V+V−H2 operators, as well as the running of B+B−H2D2n from H4D2n+4 for general n.


2010 ◽  
Vol 82 (3) ◽  
Author(s):  
J. Rotureau ◽  
I. Stetcu ◽  
B. R. Barrett ◽  
M. C. Birse ◽  
U. van Kolck

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Jacob J. Ethier ◽  
Raquel Gomez-Ambrosio ◽  
Giacomo Magni ◽  
Juan Rojo

AbstractWe present a systematic interpretation of vector boson scattering (VBS) and diboson measurements from the LHC in the framework of the dimension-six standard model effective field theory (SMEFT). We consider all available measurements of VBS fiducial cross-sections and differential distributions from ATLAS and CMS, in most cases based on the full Run II luminosity, and use them to constrain 16 independent directions in the dimension-six EFT parameter space. Compared to the diboson measurements, we find that VBS provides complementary information on several of the operators relevant for the description of the electroweak sector. We also quantify the ultimate EFT reach of VBS measurements via dedicated projections for the high luminosity LHC. Our results motivate the integration of VBS processes in future global SMEFT interpretations of particle physics data.


Sign in / Sign up

Export Citation Format

Share Document