scholarly journals DsixTools 2.0: the effective field theory toolkit

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Javier Fuentes-Martín ◽  
Pedro Ruiz-Femenía ◽  
Avelino Vicente ◽  
Javier Virto

Abstract is a package for the handling of the standard model effective field theory (SMEFT) and the low-energy effective field theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). also performs weak basis transformations, and implements the full one-loop Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Yi Liao ◽  
Xiao-Dong Ma ◽  
Quan-Yu Wang

Abstract We present a complete and independent set of dimension-7 operators in the low energy effective field theory (LEFT) where the dynamical degrees of freedom are the standard model five quarks and all of the neutral and charged leptons. All operators are non-Hermitian and are classified according to their baryon (∆B) and lepton (∆L) numbers violated. Including Hermitian-conjugated operators, there are in total 3168, 750, 588, 712 operators with (∆B, ∆L) = (0, 0), (0, ±2), (±1, ∓1), (±1, ±1) respectively. We perform the tree-level matching with the standard model effective field theory (SMEFT) up to dimension-7 (dim-7) operators in both LEFT and SMEFT. As a phenomenological application we study the effective neutrino-photon interactions due to dim-7 lepton number violating operators that are induced and much enhanced at one loop from dim-6 operators that in turn are matched from dim-7 SMEFT operators. We compare various neutrino-photon scattering cross sections with their counterparts in the standard model and highlight the new features. Finally, we illustrate how these effective interactions could arise from ultraviolet completion.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Minyuan Jiang ◽  
Teng Ma ◽  
Jing Shu

Abstract We describe the on-shell method to derive the Renormalization Group (RG) evolution of Wilson coefficients of high dimensional operators at one loop, which is a necessary part in the on-shell construction of the Standard Model Effective Field Theory (SMEFT), and exceptionally efficient based on the amplitude basis in hand. The UV divergence is obtained by firstly calculating the coefficients of scalar bubble integrals by unitary cuts, then subtracting the IR divergence in the massless bubbles, which can be easily read from the collinear factors we obtained for the Standard Model fields. Examples of deriving the anomalous dimensions at dimension six are presented in a pedagogical manner. We also give the results of contributions from the dimension-8 H4D4 operators to the running of V+V−H2 operators, as well as the running of B+B−H2D2n from H4D2n+4 for general n.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442012 ◽  
Author(s):  
Justin Khoury ◽  
Godfrey E. J. Miller ◽  
Andrew J. Tolley

Traditional derivations of general relativity (GR) from the graviton degrees of freedom assume spacetime Lorentz covariance as an axiom. In this paper, we survey recent evidence that GR is the unique spatially-covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of GR, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector. From this point of view, Lorentz covariance is a necessary feature of low-energy graviton dynamics, not a property of spacetime. This result has revolutionary implications for fundamental physics.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Xabier Marcano ◽  
Joydeep Roy

AbstractIn this work we assess the potential of discovering new physics by searching for lepton-flavour-violating (LFV) decays of the Z boson, $$Z\rightarrow \ell _i \ell _j$$ Z → ℓ i ℓ j , at the proposed circular $$e^+e^-$$ e + e - colliders CEPC and FCC-ee. Both projects plan to run at the Z-pole as a “Tera Z factory”, i.e., collecting $${\mathcal {O}}\left( 10^{12} \right) $$ O 10 12 Z decays. In order to discuss the discovery potential in a model-independent way, we revisit the LFV Z decays in the context of the Standard Model effective field theory and study the indirect constraints from LFV $$\mu $$ μ and $$\tau $$ τ decays on the operators that can induce $$Z\rightarrow \ell _i \ell _j$$ Z → ℓ i ℓ j . We find that, while the $$Z\rightarrow \mu e$$ Z → μ e rates are beyond the expected sensitivities, a Tera Z factory is promising for $$Z\rightarrow \tau \ell $$ Z → τ ℓ decays, probing New Physics at the same level of future low-energy LFV observables.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
David Marzocca ◽  
Ui Min ◽  
Minho Son

Abstract We study the effective field theory sensitivity of an LHC analysis for the τν final state with an associated b-jet. To illustrate the improvement due to the b-tagging, we first recast the recent CMS analysis in the τν channel, using an integrated luminosity of 35.9 fb−1 at $$ \sqrt{s} $$ s = 13 TeV, and provide limits on all the dimension-six effective operators which contribute to the process. The expected limits from the b-tagged analysis are then derived and compared. We find an improvement of approximately ∼ 30% in the bounds for operators with a b quark. We also discuss in detail possible angular observables to be used as a discriminator between dimension-six operators with different Lorentz structure. Finally, we study the impact of these limits on some simplified scenarios aimed at addressing the observed deviations from the Standard Model in lepton flavor universality ratios of semileptonic B-meson decays. In particular, we compare the collider limits on those scenarios set by our analysis either with or without the b-tagging, assuming an integrated luminosity of 300 fb−1, with relevant low-energy flavor measurements.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Jiayin Gu ◽  
Lian-Tao Wang

Abstract The dispersion relation of an elastic 4-point amplitude in the forward direction leads to a sum rule that connects the low energy amplitude to the high energy observables. We perform a classification of these sum rules based on massless helicity amplitudes. With this classification, we are able to systematically write down the sum rules for the dimension-6 operators of the Standard Model Effective Field Theory (SMEFT), some of which are absent in previous literatures. These sum rules offer distinct insights on the relations between the operator coefficients in the EFT and the properties of the full theory that generates them. Their applicability goes beyond tree level, and in some cases can be used as a practical method of computing the one loop contributions to low energy observables. They also provide an interesting perspective for understanding the custodial symmetries of the SM Higgs and fermion sectors.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Valerio Gherardi ◽  
David Marzocca ◽  
Elena Venturini

Abstract We perform a complete study of the low-energy phenomenology of S1 and S3 leptoquarks, aimed at addressing the observed deviations in B-meson decays and the muon magnetic dipole moment. Leptoquark contributions to observables are computed at one-loop accuracy in an effective field theory approach, using the recently published complete one-loop matching of these leptoquarks to the Standard Model effective field theory. We present several scenarios, discussing in each case the preferred parameter space and the most relevant observables.


Author(s):  
Mikael Chala ◽  
Guilherme Guedes ◽  
Maria Ramos ◽  
Jose Santiago

AbstractThe couplings of axion-like particles are probed by different experiments across a huge range of energy scales. Accordingly, a consistent analysis of the corresponding constraints requires the use of the renormalization group equations. We compute the full one-loop renormalization group evolution of all – relevant and marginal – parameters in the effective field theory for axion-like particles up to dimension five, above and below the electroweak scale, assuming only that new physics does not violate CP. We also include a detailed discussion of the different bases used in the literature, the relations among them and the interplay of the CP and shift symmetries.


Sign in / Sign up

Export Citation Format

Share Document