scholarly journals Yang-Baxter deformations of the AdS5×S5 supercoset sigma model from 4D Chern-Simons theory

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Osamu Fukushima ◽  
Jun-ichi Sakamoto ◽  
Kentaroh Yoshida

Abstract We present homogeneous Yang-Baxter deformations of the AdS5×S5 supercoset sigma model as boundary conditions of a 4D Chern-Simons theory. We first generalize the procedure for the 2D principal chiral model developed by Delduc et al. [5] so as to reproduce the 2D symmetric coset sigma model, and specify boundary conditions governing homogeneous Yang-Baxter deformations. Then the conditions are applicable for the AdS5×S5 supercoset sigma model case as well. In addition, homogeneous bi-Yang-Baxter deformation is also discussed.

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Osamu Fukushima ◽  
Jun-ichi Sakamoto ◽  
Kentaroh Yoshida

Abstract Recently, a variety of deformed T1,1 manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [46]. We refer to the NLSMs with the integrable deformed T1,1 as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic T1,1 model and 2) a G/H λ-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.


2020 ◽  
Vol 957 ◽  
pp. 115080 ◽  
Author(s):  
Osamu Fukushima ◽  
Jun-ichi Sakamoto ◽  
Kentaroh Yoshida

2011 ◽  
Vol 26 (26) ◽  
pp. 4647-4660
Author(s):  
GOR SARKISSIAN

In this paper we perform canonical quantization of the product of the gauged WZW models on a strip with boundary conditions specified by permutation branes. We show that the phase space of the N-fold product of the gauged WZW model G/H on a strip with boundary conditions given by permutation branes is symplectomorphic to the phase space of the double Chern–Simons theory on a sphere with N holes times the time-line with G and H gauge fields both coupled to two Wilson lines. For the special case of the topological coset G/G we arrive at the conclusion that the phase space of the N-fold product of the topological coset G/G on a strip with boundary conditions given by permutation branes is symplectomorphic to the phase space of Chern–Simons theory on a Riemann surface of the genus N-1 times the time-line with four Wilson lines.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Meer Ashwinkumar ◽  
Kee-Seng Png ◽  
Meng-Chwan Tan

Abstract We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symmetry. By embedding four-dimensional Chern-Simons theory in a partial twist of the five-dimensional maximally supersymmetric Yang-Mills theory on a manifold with corners, we argue that this three-dimensional Toda theory is dual to a two-dimensional topological sigma model with A-branes on the moduli space of solutions to the Bogomolny equations. This furnishes a novel 3d-2d correspondence, which, among other mathematical implications, also reveals that modules of the 3d W-algebra are modules for the quantized algebra of certain holomorphic functions on the Bogomolny moduli space.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Alfredo Pérez ◽  
Ricardo Troncoso

Abstract It has been recently argued that the averaging of free CFT’s over the Narain lattice can be holographically described through a Chern-Simons theory for U (1)D×U (1)D with a precise prescription to sum over three-dimensional handlebodies. We show that a gravitational dual of these averaged CFT’s would be provided by Einstein gravity on AdS3 with U (1)D−1× U (1)D−1 gauge fields, endowed with a precise set of boundary conditions closely related to the “soft hairy” ones. Gravitational excitations then go along diagonal SL (2, ℝ) generators, so that the asymptotic symmetries are spanned by U (1)D× U (1)D currents. The stress-energy tensor can then be geometrically seen as composite of these currents through a twisted Sugawara construction. Our boundary conditions are such that for the reduced phase space, there is a one-to-one map between the configurations in the gravitational and the purely abelian theories. The partition function in the bulk could then also be performed either from a non-abelian Chern-Simons theory for two copies of SL (2, ℝ) × U (1)D−1 generators, or formally through a path integral along the family of allowed configurations for the metric. The new boundary conditions naturally accommodate BTZ black holes, and the microscopic number of states then appears to be manifestly positive and suitably accounted for from the partition function in the bulk. The inclusion of higher spin currents through an extended twisted Sugawara construction in the context of higher spin gravity is also briefly addressed.


2017 ◽  
Vol 58 (7) ◽  
pp. 071503 ◽  
Author(s):  
Sze-Guang Yang ◽  
Zhi-You Chen ◽  
Jann-Long Chern

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David M. Schmidtt

Abstract We derive, within the Hamiltonian formalism, the classical exchange algebra of a lambda deformed string sigma model in a symmetric space directly from a 4d holomorphic Chern-Simons theory. The explicit forms of the extended Lax connection and R-matrix entering the Maillet bracket of the lambda model are explained from a symmetry principle. This approach, based on a gauge theory, may provide a mechanism for taming the non-ultralocality that afflicts most of the integrable string theories propagating in coset spaces.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
H. Adami ◽  
P. Concha ◽  
E. Rodríguez ◽  
H. R. Safari

AbstractWe present a three-dimensional Chern–Simons gravity based on a deformation of the Maxwell algebra. This symmetry allows introduction of a non-vanishing torsion to the Maxwell Chern–Simons theory, whose action recovers the Mielke–Baekler model for particular values of the coupling constants. By considering suitable boundary conditions, we show that the asymptotic symmetry is given by the $$\widehat{{\mathfrak {bms}}}_3\oplus {\mathfrak {vir}}$$ bms ^ 3 ⊕ vir algebra with three independent central charges.


2011 ◽  
Vol 845 (3) ◽  
pp. 393-435 ◽  
Author(s):  
Anton Kapustin ◽  
Natalia Saulina

Sign in / Sign up

Export Citation Format

Share Document