scholarly journals Two-loop beta function for complex scalar electroweak multiplets

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Joachim Brod ◽  
Zachary Polonsky

Abstract We present the general form of the renormalizable four-point interactions of a complex scalar field furnishing an irreducible representation of SU(2), and derive a set of algebraic identities that facilitates the calculation of higher-order radiative corrections. As an application, we calculate the two-loop beta function for the SM extended by a scalar multiplet, and provide the result explicitly in terms of the group invariants. Our results include the evolution of the Higgs-portal couplings, as well as scalar “minimal dark matter”. We present numerical results for the two-loop evolution of the various couplings.

2011 ◽  
Author(s):  
F. Briscese ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
Elí Santos-Rodríguez ◽  
...  

2002 ◽  
pp. 2049-2052
Author(s):  
L. Arturo Ureña-López ◽  
Tonatiuh Matos

2014 ◽  
Vol 29 (02) ◽  
pp. 1430002 ◽  
Author(s):  
TANJA RINDLER-DALLER ◽  
PAUL R. SHAPIRO

The nature of the cosmological dark matter (DM) remains elusive. Recent studies have advocated the possibility that DM could be composed of ultra-light, self-interacting bosons, forming a Bose–Einstein condensate (BEC) in the very early Universe. We consider models which are charged under a global U(1)-symmetry such that the DM number is conserved. It can then be described as a classical complex scalar field which evolves in an expanding Universe. We present a brief review on the bounds on the model parameters from cosmological and galactic observations, along with the properties of galactic halos which result from such a DM candidate.


2018 ◽  
Vol 191 ◽  
pp. 08002
Author(s):  
Sabir Ramazanov

We discuss a possibility of universally producing dark matter and baryon charge at inflation. For this purpose, we introduce a complex scalar field with the mass exceeding the Hubble rate during the last e-folds of inflation. We assume that the phase of the complex scalar is linearly coupled to the inflaton. This interaction explicitly breaking U(1)-symmetry leads to the production of a non-zero Noether charge. The latter serves as a source of dark matter abundance, or baryon asymmetry, if the complex scalar carries the baryon charge.


2019 ◽  
Vol 34 (20) ◽  
pp. 1950106 ◽  
Author(s):  
Cheng-Wei Chiang ◽  
Hiroshi Okada

We propose a model to explain several muon-related experimental anomalies and the abundance of dark matter. We introduce a vector-like exotic lepton that form an iso-doublet and three right-handed Majorana fermions as an iso-singlet. A real/complex scalar field is added as a dark matter candidate. We impose a global [Formula: see text] symmetry under which fields associated with the SM muon are charged. To stabilize the dark matter, we impose a [Formula: see text] (or [Formula: see text]) symmetry under which the exotic lepton doublet and the real (or complex) scalar field are charged. We find that the model can simultaneously explain the muon anomalous magnetic dipole moment and the dark matter relic density in no conflict with any lepton flavor-violating/conserving observables, with some details depending upon whether the scalar field is real or complex. Besides, we extend the framework to the quark sector in a way similar to the lepton sector, and find that the recent anomalies associated with the [Formula: see text] transition can also be accommodated while satisfying constraints such as the [Formula: see text] decays and neutral meson mixings.


2011 ◽  
Vol 01 ◽  
pp. 277-284
Author(s):  
SANG PYO KIM ◽  
SEOKTAE KOH

We study the quantum remnant of a scalar field protected by the uncertainty principle. The quantum remnant that survived the later stage of evolution of the universe may provide dark energy and dark matter depending on the potential. Though the quantum remnant shares some useful property of complex scalar field (spintessence) dark energy model, quantum fluctuations are still unstable to the linear perturbations for V ~ ϕq with q < 1 as in the spintessence model.


Sign in / Sign up

Export Citation Format

Share Document