scholarly journals Symmetry-resolved entanglement entropy in Wess-Zumino-Witten models

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Pasquale Calabrese ◽  
Jérôme Dubail ◽  
Sara Murciano

Abstract We consider the problem of the decomposition of the Rényi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider SU(2)k as a case study and then generalise to an arbitrary non-abelian Lie group. We find that at leading order in the subsystem size L the entanglement is equally distributed among the different sectors labelled by the irreducible representation of the associated algebra. We also identify the leading term that breaks this equipartition: it does not depend on L but only on the dimension of the representation. Moreover, a log log L contribution to the Rényi entropies exhibits a universal prefactor equal to half the dimension of the Lie group.

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Anastasios Irakleous ◽  
Theodore N. Tomaras ◽  
Nicolaos Toumbas

AbstractWe study the entanglement between soft and hard particles produced in generic scattering processes in QED. The reduced density matrix for the hard particles, obtained via tracing over the entire spectrum of soft photons, is shown to have a large eigenvalue, which governs the behavior of the Renyi entropies and of the non-analytic part of the entanglement entropy at low orders in perturbation theory. The leading perturbative entanglement entropy is logarithmically IR divergent. The coefficient of the IR divergence exhibits certain universality properties, irrespectively of the dressing of the asymptotic charged particles and the detailed properties of the initial state. In a certain kinematical limit, the coefficient is proportional to the cusp anomalous dimension in QED. For Fock basis computations associated with two-electron scattering, we derive an exact expression for the large eigenvalue of the density matrix in terms of hard scattering amplitudes, which is valid at any finite order in perturbation theory. As a result, the IR logarithmic divergences appearing in the expressions for the Renyi and entanglement entropies persist at any finite order of the perturbative expansion. To all orders, however, the IR logarithmic divergences exponentiate, rendering the large eigenvalue of the density matrix IR finite. The all-orders Renyi entropies (per unit time, per particle flux), which are shown to be proportional to the total inclusive cross-section in the initial state, are also free of IR divergences. The entanglement entropy, on the other hand, retains non-analytic, logarithmic behavior with respect to the size of the box (which provides the IR cutoff) even to all orders in perturbation theory.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Soumangsu Chakraborty ◽  
Akikazu Hashimoto

Abstract We derive the geodesic equation for determining the Ryu-Takayanagi surface in AdS3 deformed by single trace $$ \mu T\overline{T} $$ μT T ¯ + $$ {\varepsilon}_{+}J\overline{T} $$ ε + J T ¯ + $$ {\varepsilon}_{-}T\overline{J} $$ ε − T J ¯ deformation for generic values of (μ, ε+, ε−) for which the background is free of singularities. For generic values of ε±, Lorentz invariance is broken, and the Ryu-Takayanagi surface embeds non-trivially in time as well as spatial coordinates. We solve the geodesic equation and characterize the UV and IR behavior of the entanglement entropy and the Casini-Huerta c-function. We comment on various features of these observables in the (μ, ε+, ε−) parameter space. We discuss the matching at leading order in small (μ, ε+, ε−) expansion of the entanglement entropy between the single trace deformed holographic system and a class of double trace deformed theories where a strictly field theoretic analysis is possible. We also comment on expectation value of a large rectangular Wilson loop-like observable.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jie Ren

Abstract We analytically study phase transitions of holographic charged Rényi entropies in two gravitational systems dual to the $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at finite density and zero temperature. The first system is the Reissner-Nordström-AdS5 black hole, which has finite entropy at zero temperature. The second system is a charged dilatonic black hole in AdS5, which has zero entropy at zero temperature. Hyperbolic black holes are employed to calculate the Rényi entropies with the entangling surface being a sphere. We perturb each system by a charged scalar field, and look for a zero mode signaling the instability of the extremal hyperbolic black hole. Zero modes as well as the leading order of the full retarded Green’s function are analytically solved for both systems, in contrast to previous studies in which only the IR (near horizon) instability was analytically treated.


2018 ◽  
Vol 4 (1) ◽  
pp. 134-142 ◽  
Author(s):  
C.A. Onate ◽  
A.N. Ikot ◽  
M.C. Onyeaju ◽  
O. Ebomwonyi ◽  
J.O.A. Idiodi

2011 ◽  
Vol 52 (2) ◽  
pp. 022105 ◽  
Author(s):  
P. Sánchez-Moreno ◽  
S. Zozor ◽  
J. S. Dehesa

2017 ◽  
Vol 3 (6) ◽  
Author(s):  
Oskar Vafek ◽  
Nicolas Regnault ◽  
B. Andrei Bernevig

We compute exactly the von Neumann entanglement entropy of the eta-pairing states - a large set of exact excited eigenstates of the Hubbard Hamiltonian. For the singlet eta-pairing states the entropy scales with the logarithm of the spatial dimension of the (smaller) partition. For the eta-pairing states with finite spin magnetization density, the leading term can scale as the volume or as the area-times-log, depending on the momentum space occupation of the Fermions with flipped spins. We also compute the corrections to the leading scaling. In order to study the eigenstate thermalization hypothesis (ETH), we also compute the entanglement Rényi entropies of such states and compare them with the corresponding entropies of thermal density matrix in various ensembles. Such states, which we find violate strong ETH, may provide a useful platform for a detailed study of the time-dependence of the onset of thermalization due to perturbations which violate the total pseudospin conservation.


Sign in / Sign up

Export Citation Format

Share Document