scholarly journals Entanglement of exact excited eigenstates of the Hubbard model in arbitrary dimension

2017 ◽  
Vol 3 (6) ◽  
Author(s):  
Oskar Vafek ◽  
Nicolas Regnault ◽  
B. Andrei Bernevig

We compute exactly the von Neumann entanglement entropy of the eta-pairing states - a large set of exact excited eigenstates of the Hubbard Hamiltonian. For the singlet eta-pairing states the entropy scales with the logarithm of the spatial dimension of the (smaller) partition. For the eta-pairing states with finite spin magnetization density, the leading term can scale as the volume or as the area-times-log, depending on the momentum space occupation of the Fermions with flipped spins. We also compute the corrections to the leading scaling. In order to study the eigenstate thermalization hypothesis (ETH), we also compute the entanglement Rényi entropies of such states and compare them with the corresponding entropies of thermal density matrix in various ensembles. Such states, which we find violate strong ETH, may provide a useful platform for a detailed study of the time-dependence of the onset of thermalization due to perturbations which violate the total pseudospin conservation.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


2015 ◽  
Vol 30 (16) ◽  
pp. 1530039 ◽  
Author(s):  
O. Obregón

A nonextensive statistical mechanics entropy that depends only on the probability distribution is proposed in the framework of superstatistics. It is based on a Γ(χ2) distribution that depends on β and also on pl. The corresponding modified von Neumann entropy is constructed; it is shown that it can also be obtained from a generalized Replica trick. We further demonstrate a generalized H-theorem. Considering the entropy as a function of the temperature and volume, it is possible to generalize the equation of state of an ideal gas. Moreover, following the entropic force formulation a generalized Newton's law is obtained, and following the proposal that the Einstein equations can be deduced from the Clausius law, we discuss on the structure that a generalized Einstein's theory would have. Lastly, we address the question whether the generalized entanglement entropy can play a role in the gauge/gravity duality. We pay attention to 2d CFT and their gravity duals. The correction terms to the von Neumann entropy result more relevant than the usual UV ones and also than those due to the area dependent AdS3 entropy which result comparable to the UV ones. Then the correction terms due to the new entropy would modify the Ryu–Takayanagi identification between the CFT entanglement entropy and the AdS entropy in a different manner than the UV ones or than the corrections to the AdS3 area dependent entropy.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 539 ◽  
Author(s):  
Lu Wei

The Tsallis entropy is a useful one-parameter generalization to the standard von Neumann entropy in quantum information theory. In this work, we study the variance of the Tsallis entropy of bipartite quantum systems in a random pure state. The main result is an exact variance formula of the Tsallis entropy that involves finite sums of some terminating hypergeometric functions. In the special cases of quadratic entropy and small subsystem dimensions, the main result is further simplified to explicit variance expressions. As a byproduct, we find an independent proof of the recently proven variance formula of the von Neumann entropy based on the derived moment relation to the Tsallis entropy.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Ali Mollabashi ◽  
Kotaro Tamaoka

Abstract We study odd entanglement entropy (odd entropy in short), a candidate of measure for mixed states holographically dual to the entanglement wedge cross section, in two-dimensional free scalar field theories. Our study is restricted to Gaussian states of scale-invariant theories as well as their finite temperature generalizations, for which we show that odd entropy is a well-defined measure for mixed states. Motivated from holographic results, the difference between odd and von Neumann entropy is also studied. In particular, we show that large amounts of quantum correlations ensure the odd entropy to be larger than von Neumann entropy, which is qualitatively consistent with the holographic CFT. In general cases, we also find that this difference is not even a monotonic function with respect to size of (and distance between) subsystems.


2015 ◽  
Vol 88 (1) ◽  
Author(s):  
Honglei Wang ◽  
Yao Heng Su ◽  
Bo Liang ◽  
Longcong Chen

2016 ◽  
Vol 13 (10) ◽  
pp. 7455-7459
Author(s):  
S. I Ali ◽  
A. M Mosallem ◽  
T Emam

In this paper, we investigate the entanglement of the interaction of three modes of radiation field with moving and unmoving two-level atom. The time evolution of the von Neumann entropy, entropy squeezing and marginal atomic Wehrl entropy is investigated. The marginal atomic Wehrl entropy as squeezing indicator of the entanglement of the system is suggested. The results beacon the important roles played by both the atomic motion parameters in the evolution of entanglement, entropy squeezing and marginal atomic Wehrl entropy. Using special values of the photon number of transition and atomic motion parameter, the entanglement phenomena of sudden death and long living entanglenment can be appeared. The results show that there is atomic motion monotonic harmonization atomic Wehrl entropy (WE). It is illustrated that the amount of the above-mentioned phenomena can be tuned by controlling the evolved parameters appropriately.


2009 ◽  
Vol 103 (11) ◽  
Author(s):  
Ann B. Kallin ◽  
Iván González ◽  
Matthew B. Hastings ◽  
Roger G. Melko

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Imtiaz Wasim ◽  
Muhammad Abbas ◽  
Muhammad Amin

In this study, we introduce a new numerical technique for solving nonlinear generalized Burgers-Fisher and Burgers-Huxley equations using hybrid B-spline collocation method. This technique is based on usual finite difference scheme and Crank-Nicolson method which are used to discretize the time derivative and spatial derivatives, respectively. Furthermore, hybrid B-spline function is utilized as interpolating functions in spatial dimension. The scheme is verified unconditionally stable using the Von Neumann (Fourier) method. Several test problems are considered to check the accuracy of the proposed scheme. The numerical results are in good agreement with known exact solutions and the existing schemes in literature.


2015 ◽  
Vol 30 (24) ◽  
pp. 1550141 ◽  
Author(s):  
M. F. Ghiti ◽  
N. Mebarki ◽  
H. Aissaoui

The noncommutative Bianchi I curved space–time vierbeins and spin connections are derived. Moreover, the corresponding noncommutative Dirac equation as well as its solutions are presented. As an application within the quantum field theory approach using Bogoliubov transformations, the von Neumann fermion–antifermion pair creation quantum entanglement entropy is studied. It is shown that its behavior is strongly dependent on the value of the noncommutativity [Formula: see text] parameter, [Formula: see text]-modes frequencies and the structure of the curved space–time. Various discussions of the obtained features are presented.


Sign in / Sign up

Export Citation Format

Share Document