scholarly journals Soft photon radiation and entanglement

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Anastasios Irakleous ◽  
Theodore N. Tomaras ◽  
Nicolaos Toumbas

AbstractWe study the entanglement between soft and hard particles produced in generic scattering processes in QED. The reduced density matrix for the hard particles, obtained via tracing over the entire spectrum of soft photons, is shown to have a large eigenvalue, which governs the behavior of the Renyi entropies and of the non-analytic part of the entanglement entropy at low orders in perturbation theory. The leading perturbative entanglement entropy is logarithmically IR divergent. The coefficient of the IR divergence exhibits certain universality properties, irrespectively of the dressing of the asymptotic charged particles and the detailed properties of the initial state. In a certain kinematical limit, the coefficient is proportional to the cusp anomalous dimension in QED. For Fock basis computations associated with two-electron scattering, we derive an exact expression for the large eigenvalue of the density matrix in terms of hard scattering amplitudes, which is valid at any finite order in perturbation theory. As a result, the IR logarithmic divergences appearing in the expressions for the Renyi and entanglement entropies persist at any finite order of the perturbative expansion. To all orders, however, the IR logarithmic divergences exponentiate, rendering the large eigenvalue of the density matrix IR finite. The all-orders Renyi entropies (per unit time, per particle flux), which are shown to be proportional to the total inclusive cross-section in the initial state, are also free of IR divergences. The entanglement entropy, on the other hand, retains non-analytic, logarithmic behavior with respect to the size of the box (which provides the IR cutoff) even to all orders in perturbation theory.

2014 ◽  
Vol 21 (03) ◽  
pp. 1450006 ◽  
Author(s):  
Mark Fannes

The von Neumann entropy of a density matrix of dimension d, expressed in terms of the first d − 1 integer order Rényi entropies, is monotonically increasing in Rényi entropies of even order and decreasing in those of odd order.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Pasquale Calabrese ◽  
Jérôme Dubail ◽  
Sara Murciano

Abstract We consider the problem of the decomposition of the Rényi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider SU(2)k as a case study and then generalise to an arbitrary non-abelian Lie group. We find that at leading order in the subsystem size L the entanglement is equally distributed among the different sectors labelled by the irreducible representation of the associated algebra. We also identify the leading term that breaks this equipartition: it does not depend on L but only on the dimension of the representation. Moreover, a log log L contribution to the Rényi entropies exhibits a universal prefactor equal to half the dimension of the Lie group.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jie Ren

Abstract We analytically study phase transitions of holographic charged Rényi entropies in two gravitational systems dual to the $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at finite density and zero temperature. The first system is the Reissner-Nordström-AdS5 black hole, which has finite entropy at zero temperature. The second system is a charged dilatonic black hole in AdS5, which has zero entropy at zero temperature. Hyperbolic black holes are employed to calculate the Rényi entropies with the entangling surface being a sphere. We perturb each system by a charged scalar field, and look for a zero mode signaling the instability of the extremal hyperbolic black hole. Zero modes as well as the leading order of the full retarded Green’s function are analytically solved for both systems, in contrast to previous studies in which only the IR (near horizon) instability was analytically treated.


2018 ◽  
Vol 4 (1) ◽  
pp. 134-142 ◽  
Author(s):  
C.A. Onate ◽  
A.N. Ikot ◽  
M.C. Onyeaju ◽  
O. Ebomwonyi ◽  
J.O.A. Idiodi

2011 ◽  
Vol 52 (2) ◽  
pp. 022105 ◽  
Author(s):  
P. Sánchez-Moreno ◽  
S. Zozor ◽  
J. S. Dehesa

Sign in / Sign up

Export Citation Format

Share Document