scholarly journals Bootstrapping octagons in reduced kinematics from A2 cluster algebras

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Yichao Tang ◽  
Qinglin Yang

Abstract Multi-loop scattering amplitudes/null polygonal Wilson loops in $$ \mathcal{N} $$ N = 4 super-Yang-Mills are known to simplify significantly in reduced kinematics, where external legs/edges lie in an 1 + 1 dimensional subspace of Minkowski spacetime (or boundary of the AdS3 subspace). Since the edges of a 2n-gon with even and odd labels go along two different null directions, the kinematics is reduced to two copies of G(2, n)/T ∼ An−3. In the simplest octagon case, we conjecture that all loop amplitudes and Feynman integrals are given in terms of two overlapping A2 functions (a special case of two-dimensional harmonic polylogarithms): in addition to the letters v, 1 + v, w, 1 + w of A1 × A1, there are two letters v − w, 1 − vw mixing the two sectors but they never appear together in the same term; these are the reduced version of four-mass-box algebraic letters. Evidence supporting our conjecture includes all known octagon amplitudes as well as new computations of multi-loop integrals in reduced kinematics. By leveraging this alphabet and conditions on first and last entries, we initiate a bootstrap program in reduced kinematics: within the remarkably simple space of overlapping A2 functions, we easily obtain octagon amplitudes up to two-loop NMHV and three-loop MHV. We also briefly comment on the generalization to 2n-gons in terms of A2 functions and beyond.

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Livia Ferro ◽  
Robert Moerman

Abstract Recently, scattering amplitudes in four-dimensional Minkowski spacetime have been interpreted as conformal correlation functions on the two-dimensional celestial sphere, the so-called celestial amplitudes. In this note we consider tree-level scattering amplitudes in $$ \mathcal{N} $$ N = 4 super Yang-Mills theory and present a Grassmannian formulation of their celestial counterparts. This result paves the way towards a geometric picture for celestial superamplitudes, in the spirit of positive geometries.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
James Drummond ◽  
Jack Foster ◽  
Ömer Gürdoğan ◽  
Chrysostomos Kalousios

Abstract We address the appearance of algebraic singularities in the symbol alphabet of scattering amplitudes in the context of planar $$ \mathcal{N} $$ N = 4 super Yang-Mills theory. We argue that connections between cluster algebras and tropical geometry provide a natural language for postulating a finite alphabet for scattering amplitudes beyond six and seven points where the corresponding Grassmannian cluster algebras are finite. As well as generating natural finite sets of letters, the tropical fans we discuss provide letters containing square roots. Remarkably, the minimal fan we consider provides all the square root letters recently discovered in an explicit two-loop eight-point NMHV calculation.


2018 ◽  
Vol 175 ◽  
pp. 12002
Author(s):  
Ryutaro Matsudo ◽  
Kei-Ichi Kondo ◽  
Akihiro Shibata

We examine how the average of double-winding Wilson loops depends on the number of color N in the SU(N) Yang-Mills theory. In the case where the two loops C1 and C2 are identical, we derive the exact operator relation which relates the doublewinding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on N. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for N = 2 is excluded for N ⩾ 3, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law (N − 3)A1/(N − 1) + A2 with A1 and A2(A1 < A2) being the minimal areas spanned respectively by the loops C1 and C2, which is neither sum-ofareas (A1 + A2) nor difference-of-areas (A2 − A1) law when (N ⩾ 3). Indeed, this behavior can be confirmed in the two-dimensional SU(N) Yang-Mills theory exactly.


Author(s):  
YUJI SATOH

We discuss gluon scattering amplitudes/null-polygonal Wilson loops of [Formula: see text] super Yang-Mills theory at strong coupling based on the gauge/string duality and its underlying integrability. We focus on the amplitudes/Wilson loops corresponding to the minimal surfaces in AdS3, which are described by the thermodynamic Bethe ansatz equations of the homogeneous sine-Gordon model. Using conformal perturbation theory and an interesting relation between the g-function (boundary entropy) and the T-function, we derive analytic expansions around the limit where the Wilson loops become regular-polygonal. We also compare our analytic results with those at two loops, to find that the rescaled remainder functions are close to each other for all multi-point amplitudes.


2021 ◽  
Vol 126 (23) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang ◽  
Chi Zhang

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We comment on the status of “Steinmann-like” constraints, i.e. all-loop constraints on consecutive entries of the symbol of scattering amplitudes and Feynman integrals in planar $$ \mathcal{N} $$ N = 4 super-Yang-Mills, which have been crucial for the recent progress of the bootstrap program. Based on physical discontinuities and Steinmann relations, we first summarize all possible double discontinuities (or first-two-entries) for (the symbol of) amplitudes and integrals in terms of dilogarithms, generalizing well-known results for n = 6, 7 to all multiplicities. As our main result, we find that extended-Steinmann relations hold for all finite integrals that we have checked, including various ladder integrals, generic double-pentagon integrals, as well as finite components of two-loop NMHV amplitudes for any n; with suitable normalization such as minimal subtraction, they hold for n = 8 MHV amplitudes at three loops. We find interesting cancellation between contributions from rational and algebraic letters, and for the former we have also tested cluster-adjacency conditions using the so-called Sklyanin brackets. Finally, we propose a list of possible last-two-entries for MHV amplitudes up to 9 points derived from $$ \overline{Q} $$ Q ¯ equations, which can be used to reduce the space of functions for higher-point MHV amplitudes.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Enrico Herrmann ◽  
Cameron Langer ◽  
Jaroslav Trnka ◽  
Minshan Zheng

Abstract We initiate the systematic study of local positive spaces which arise in the context of the Amplituhedron construction for scattering amplitudes in planar maximally supersymmetric Yang-Mills theory. We show that all local positive spaces relevant for one-loop MHV amplitudes are characterized by certain sign-flip conditions and are associated with surprisingly simple logarithmic forms. In the maximal sign-flip case they are finite one-loop octagons. Particular combinations of sign-flip spaces can be glued into new local positive geometries. These correspond to local pentagon integrands that appear in the local expansion of the MHV one-loop amplitude. We show that, geometrically, these pentagons do not triangulate the original Amplituhedron space but rather its twin “Amplituhedron-Prime”. This new geometry has the same boundary structure as the Amplituhedron (and therefore the same logarithmic form) but differs in the bulk as a geometric space. On certain two-dimensional boundaries, where the Amplituhedron geometry reduces to a polygon, we check that both spaces map to the same dual polygon. Interestingly, we find that the pentagons internally triangulate that dual space. This gives a direct evidence that the chiral pentagons are natural building blocks for a yet-to-be discovered dual Amplituhedron.


Sign in / Sign up

Export Citation Format

Share Document