scholarly journals String correlators in AdS3 from FZZ duality

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Gaston Giribet

Abstract Motivated by recent works in which the FZZ duality plays an important role, we revisit the computation of correlation functions in the sine-Liouville field theory. We present a direct computation of the three-point function, the simplest to the best of our knowledge, and give expressions for the N-point functions in terms of integrated Liouville theory correlators. This leads us to discuss the relation to the $$ {H}_3^{+} $$ H 3 + WZW-Liouville correspondence, especially in the case in which spectral flow is taken into account. We explain how these results can be used to study scattering amplitudes of winding string states in AdS3.

2006 ◽  
Vol 21 (19n20) ◽  
pp. 4003-4034 ◽  
Author(s):  
GASTON GIRIBET ◽  
YU NAKAYAMA

Recently, Ribault and Teschner pointed out the existence of a one-to-one correspondence between N-point correlation functions for the SL (2,ℂ)k/ SU (2) WZNW model on the sphere and certain set of 2N-2-point correlation functions in Liouville field theory. This result is based on a seminal work by Stoyanovsky. Here, we discuss the implications of this correspondence focusing on its application to string theory on curved backgrounds. For instance, we analyze how the divergences corresponding to worldsheet instantons in AdS3 can be understood as arising from the insertion of the dual screening operator in the Liouville theory side. We also study the pole structure of N-point functions in the 2D Euclidean black hole and its holographic meaning in terms of the Little String Theory. This enables us to interpret the correspondence between CFT's as encoding a LSZ-type reduction procedure. Furthermore, we discuss the scattering amplitudes violating the winding number conservation in those backgrounds and provide a formula connecting such amplitudes with observables in Liouville field theory. Finally, we study the WZNW correlation functions in the limit k → 0 and show that, at the point k = 0, the Stoyanovsky–Ribault–Teschner dictionary turns out to be in agreement with the FZZ conjecture at a particular point of the space of parameters where the Liouville central charge becomes cL = -2. This result makes contact with recent studies on the dynamical tachyon condensation in closed string theory.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Thomas Creutzig ◽  
Yasuaki Hikida

Abstract We examine strong/weak dualities in two dimensional conformal field theories by generalizing the Fateev-Zamolodchikov-Zamolodchikov (FZZ-)duality between Witten’s cigar model described by the $$ \mathfrak{sl}(2)/\mathfrak{u}(1) $$ sl 2 / u 1 coset and sine-Liouville theory. In a previous work, a proof of the FZZ-duality was provided by applying the reduction method from $$ \mathfrak{sl}(2) $$ sl 2 Wess-Zumino-Novikov-Witten model to Liouville field theory and the self-duality of Liouville field theory. In this paper, we work with the coset model of the type $$ \mathfrak{sl}\left(N+1\right)/\left(\mathfrak{sl}(N)\times \mathfrak{u}(1)\right) $$ sl N + 1 / sl N × u 1 and investigate the equivalence to a theory with an $$ \mathfrak{sl}\left(N+\left.1\right|N\right) $$ sl N + 1 N structure. We derive the duality explicitly for N = 2, 3 by applying recent works on the reduction method extended for $$ \mathfrak{sl}(N) $$ sl N and the self-duality of Toda field theory. Our results can be regarded as a conformal field theoretic derivation of the duality of the Gaiotto-Rapčák corner vertex operator algebras Y0,N,N+1[ψ] and YN,0,N+1[ψ−1].


2002 ◽  
Vol 622 (1-2) ◽  
pp. 309-327 ◽  
Author(s):  
B. Ponsot ◽  
J. Teschner

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Evgeny I. Buchbinder ◽  
Jessica Hutomo ◽  
Sergei M. Kuzenko

Abstract We consider $$ \mathcal{N} $$ N = 1 superconformal field theories in four dimensions possessing an additional conserved spinor current multiplet Sα and study three-point functions involving such an operator. A conserved spinor current multiplet naturally exists in superconformal theories with $$ \mathcal{N} $$ N = 2 supersymmetry and contains the current of the second supersymmetry. However, we do not assume $$ \mathcal{N} $$ N = 2 supersymmetry. We show that the three-point function of two spinor current multiplets and the $$ \mathcal{N} $$ N = 1 supercurrent depends on three independent tensor structures and, in general, is not contained in the three-point function of the $$ \mathcal{N} $$ N = 2 supercurrent. It then follows, based on symmetry considerations only, that the existence of one more Grassmann odd current multiplet in $$ \mathcal{N} $$ N = 1 superconformal field theory does not necessarily imply $$ \mathcal{N} $$ N = 2 superconformal symmetry.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Jae-Hyuk Oh

Abstract We explore conformally coupled scalar theory in AdS6 extensively and their classical solutions by employing power expansion order by order in its self-interaction coupling λ. We describe how we get the classical solutions by diagrammatic ways which show general rules constructing the classical solutions. We study holographic correlation functions of scalar operator deformations to a certain 5-dimensional conformal field theory where the operators share the same scaling dimension ∆ = 3, from the classical solutions. We do not assume any specific form of the micro Lagrangian density of the 5-dimensional conformal field theory. For our solutions, we choose a scheme where we remove co-linear divergences of momenta along the AdS boundary directions which frequently appear in the classical solutions. This shows clearly that the holographic correlation functions are free from the co-linear divergences. It turns out that this theory provides correct conformal 2- and 3- point functions of the ∆ = 3 scalar operators as expected in previous literature. It makes sense since 2- and 3- point functions are determined by global conformal symmetry not being dependent on the details of the conformal theory. We also get 4-point function from this holographic model. In fact, it turns out that the 4-point correlation function is not conformal because it does not satisfy the special conformal Ward identity although it does dilation Ward identity and respect SO(5) rotation symmetry. However, in the co-linear limit that all the external momenta are in a same direction, the 4-point function is conformal which means that it satisfy the special conformal Ward identity. We inspect holographic n-point functions of this theory which can be obtained by employing a certain Feynman-like rule. This rule is a construction of n-point function by connecting l-point functions each other where l < n. In the co-linear limit, these n-point functions reproduce the conformal n-point functions of ∆ = 3 scalar operators in d = 5 Euclidean space addressed in arXiv:2001.05379.


2004 ◽  
Vol 19 (17n18) ◽  
pp. 2771-2930 ◽  
Author(s):  
YU NAKAYAMA

We review recent developments (up to January 2004) of the Liouville field theory and its matrix model dual. This review consists of two parts. In part I, we review the bosonic Liouville theory. After briefly reviewing the necessary background, we discuss the bulk structure constants (the DOZZ formula) and the boundary states (the FZZT brane and the ZZ brane). Various applications are also presented. In part II, we review the supersymmetric extension of the Liouville theory. We first discuss the bulk structure constants and the branes as in the bosonic Liouville theory, and then we present the matrix dual descriptions with some applications. This review also includes some original material such as the derivation of the conjectured dual action for the [Formula: see text] Liouville theory from other known dualities.


1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


Sign in / Sign up

Export Citation Format

Share Document