scholarly journals 4-point function from conformally coupled scalar in AdS6

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Jae-Hyuk Oh

Abstract We explore conformally coupled scalar theory in AdS6 extensively and their classical solutions by employing power expansion order by order in its self-interaction coupling λ. We describe how we get the classical solutions by diagrammatic ways which show general rules constructing the classical solutions. We study holographic correlation functions of scalar operator deformations to a certain 5-dimensional conformal field theory where the operators share the same scaling dimension ∆ = 3, from the classical solutions. We do not assume any specific form of the micro Lagrangian density of the 5-dimensional conformal field theory. For our solutions, we choose a scheme where we remove co-linear divergences of momenta along the AdS boundary directions which frequently appear in the classical solutions. This shows clearly that the holographic correlation functions are free from the co-linear divergences. It turns out that this theory provides correct conformal 2- and 3- point functions of the ∆ = 3 scalar operators as expected in previous literature. It makes sense since 2- and 3- point functions are determined by global conformal symmetry not being dependent on the details of the conformal theory. We also get 4-point function from this holographic model. In fact, it turns out that the 4-point correlation function is not conformal because it does not satisfy the special conformal Ward identity although it does dilation Ward identity and respect SO(5) rotation symmetry. However, in the co-linear limit that all the external momenta are in a same direction, the 4-point function is conformal which means that it satisfy the special conformal Ward identity. We inspect holographic n-point functions of this theory which can be obtained by employing a certain Feynman-like rule. This rule is a construction of n-point function by connecting l-point functions each other where l < n. In the co-linear limit, these n-point functions reproduce the conformal n-point functions of ∆ = 3 scalar operators in d = 5 Euclidean space addressed in arXiv:2001.05379.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Bin Chen ◽  
Peng-xiang Hao ◽  
Reiko Liu ◽  
Zhe-fei Yu

Abstract In this work, we develop conformal bootstrap for Galilean conformal field theory (GCFT). In a GCFT, the Hilbert space could be decomposed into quasiprimary states and its global descendants. Different from the usual conformal field theory, the quasiprimary states in a GCFT constitute multiplets, which are block-diagonized under the Galilean boost operator. More importantly the multiplets include the states of negative norms, indicating the theory is not unitary. We compute global blocks of the multiplets, and discuss the expansion of four-point functions in terms of the global blocks of the multiplets. Furthermore we do the harmonic analysis for the Galilean conformal symmetry and obtain an inversion formula. As the first step to apply the Galilean conformal bootstrap, we construct generalized Galilean free theory (GGFT) explicitly. We read the data of GGFT by using Taylor series expansion of four-point function and the inversion formula independently, and find exact agreement. We discuss some novel features in the Galilean conformal bootstrap, due to the non-semisimpleness of the Galilean conformal algebra and the non-unitarity of the GCFTs.



1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.



2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Hongliang Jiang

Abstract Celestial amplitude is a new reformulation of momentum space scattering amplitudes and offers a promising way for flat holography. In this paper, we study the celestial amplitudes in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills (SYM) theory aiming at understanding the role of superconformal symmetry in celestial holography. We first construct the superconformal generators acting on the celestial superfield which assembles all the on-shell fields in the multiplet together in terms of celestial variables and Grassmann parameters. These generators satisfy the superconformal algebra of $$ \mathcal{N} $$ N = 4 SYM theory. We also compute the three-point and four-point celestial super-amplitudes explicitly. They can be identified as the conformal correlation functions of the celestial superfields living at the celestial sphere. We further study the soft and collinear limits which give rise to the super-Ward identity and super-OPE on the celestial sphere, respectively. Our results initiate a new perspective of understanding the well-studied $$ \mathcal{N} $$ N = 4 SYM amplitudes via 2D celestial conformal field theory.



2002 ◽  
Vol 35 (12) ◽  
pp. 2985-3007 ◽  
Author(s):  
N M Nikolov ◽  
Ya S Stanev ◽  
I T Todorov


2013 ◽  
Vol 21 ◽  
pp. 138-139
Author(s):  
SHOTARO SHIBA

The AGT-W relation is a conjecture of the nontrivial duality between 4-dim quiver gauge theory and 2-dim conformal field theory. We verify a part of this conjecture for all the cases of quiver gauge groups by studying on the property of 3-point correlation function of conformal theory. We also mention the relation to [Formula: see text] algebra as one of the promising direction towards the proof of the remaining part.



2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Christopher P. Herzog ◽  
Abhay Shrestha

Abstract This paper is designed to be a practical tool for constructing and investigating two-point correlation functions in defect conformal field theory, directly in physical space, between any two bulk primaries or between a bulk primary and a defect primary, with arbitrary spin. Although geometrically elegant and ultimately a more powerful approach, the embedding space formalism gets rather cumbersome when dealing with mixed symmetry tensors, especially in the projection to physical space. The results in this paper provide an alternative method for studying two-point correlation functions for a generic d-dimensional conformal field theory with a flat p-dimensional defect and d − p = q co-dimensions. We tabulate some examples of correlation functions involving a conserved current, an energy momentum tensor and a Maxwell field strength, while analysing the constraints arising from conservation and the equations of motion. A method for obtaining bulk-to-defect correlators is also explained. Some explicit examples are considered: free scalar theory on ℝp× (ℝq/ℤ2) and a free four dimensional Maxwell theory on a wedge.



1993 ◽  
Vol 08 (31) ◽  
pp. 5537-5561 ◽  
Author(s):  
HITOSHI KONNO

We consider the Feigin-Fuchs-Felder formalism of the SU (2)k× SU (2)l/ SU (2)k+l coset minimal conformal field theory and extend it to higher genus. We investigate a double BRST complex with respect to two compatible BRST charges, one associated with the parafermion sector and the other associated with the minimal sector in the theory. The usual screened vertex operator is extended to the BRST-invariant screened three-string vertex. We carry out a sewing operation of these vertices and derive the BRST-invariant screened g-loop operator. The latter operator characterizes the higher genus structure of the theory. An analogous operator formalism for the topological minimal model is obtained as the limit l=0 of the coset theory. We give some calculations of correlation functions on higher genus.





2008 ◽  
Vol 23 (39) ◽  
pp. 3307-3315 ◽  
Author(s):  
FEDELE LIZZI ◽  
PATRIZIA VITALE

We discuss conformal symmetry on the two-dimensional noncommutative plane equipped with Moyal product in the twist deformed context. We show that the consistent use of the twist procedure leads to results which are free from ambiguities. This lends support to the importance of the use of twist symmetries in noncommutative geometry.



Sign in / Sign up

Export Citation Format

Share Document