scholarly journals A tale of invisibility: constraints on new physics in b → sνν

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Tobias Felkl ◽  
Sze Lok Li ◽  
Michael A. Schmidt

Abstract The Belle II experiment will measure the rare decays B → Kνν and B → K∗νν with increased sensitivity which can hence be expected to serve as a very efficient probe of new physics. We calculate the relevant branching ratios in low-energy effective field theory (LEFT) including an arbitrary number of massive sterile neutrinos and discuss the expected sensitivity to the different operators. We also take into account the longitudinal polarisation fraction FL and the inclusive decay rate B → Xsνν. In our investigation we consider new physics dominantly contributing to one and two operators both for massless and massive (sterile) neutrinos. Our results show a powerful interplay of the exclusive decay rates B → Kνν and B → K∗νν, and a surprisingly large sensitivity of the inclusive decay mode to vector operators even under conservative assumptions about its uncertainty. Furthermore, the sensitivity of FL is competitive with the branching ratio of B → K∗νν in the search for new physics contributing to scalar operators and thus also complementary to B → Kνν and B → Xsνν.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tong Li ◽  
Xiao-Dong Ma ◽  
Michael A. Schmidt

Abstract In this work we investigate the implication of low-energy precision measurements on the quark-lepton charged currents in general neutrino interactions with sterile neutrinos in effective field theories. The physics in low-energy measurements is described by the low-energy effective field theory extended with sterile neutrinos (LNEFT) defined below the electroweak scale. We also take into account renormalization group running and match the LNEFT onto the Standard Model (SM) effective field theory with sterile neutrinos (SMNEFT) to constrain new physics (NP) above the electroweak scale. The most sensitive low-energy probes are from leptonic decays of pseudoscalar mesons and hadronic tau lepton decays in terms of precise decay branching fractions, the lepton flavor universality and the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. We also consider other constraints including nuclear beta decay. The constraints on charged current operators are generally stronger than the ones for quark-neutrino neutral current operators. We find that the most stringent bounds on the NP scale of lepton-number-conserving and lepton- number-violating operators in SMNEFT are 74 (110) TeV and 9.8 (13) TeV, respectively, for the operators with down (strange) quark.


1999 ◽  
Vol 14 (27) ◽  
pp. 4365-4393 ◽  
Author(s):  
E. O. ILTAN

We present the leading logarithmic QCD corrections to the matrix element of the decay b→de+e- in the two Higgs doublet model with tree level flavor changing currents (model III). We continue studying the differential branching ratio and the CP-violating asymmetry for the exclusive decays B→πe+e- and B→ρe+e- and analysing the dependencies of these quantities on the selected model III parameters, ξU,D, including the leading logarithmic QCD corrections. Further, we present the forward–backward asymmetry of dileptons for the decay B→ρe+e- and discuss the dependencies to the model III parameters. We observe that there is a possibility to enhance the branching ratios and suppress the CP-violating effects for both decays in the framework of the model III. Therefore, the measurements of these quantities will be an efficient tool to search the new physics beyond the SM.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Jordy de Vries ◽  
Herbert K. Dreiner ◽  
Julian Y. Günther ◽  
Zeren Simon Wang ◽  
Guanghui Zhou

Abstract We study the prospects of a displaced-vertex search of sterile neutrinos at the Large Hadron Collider (LHC) in the framework of the neutrino-extended Standard Model Effective Field Theory (νSMEFT). The production and decay of sterile neutrinos can proceed via the standard active-sterile neutrino mixing in the weak current, as well as through higher-dimensional operators arising from decoupled new physics. If sterile neutrinos are long-lived, their decay can lead to displaced vertices which can be reconstructed. We investigate the search sensitivities for the ATLAS/CMS detector, the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP, and at the proposed fixed-target experiment SHiP. We study scenarios where sterile neutrinos are predominantly produced via rare charm and bottom mesons decays through minimal mixing and/or dimension-six operators in the νSMEFT Lagrangian. We perform simulations to determine the potential reach of high-luminosity LHC experiments in probing the EFT operators, finding that these experiments are very competitive with other searches.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012018
Author(s):  
J Ineead ◽  
S Nishida ◽  
B Asavapibhop ◽  
N Suwonjandee

Abstract The electroweak b → sll (l = e, µ) transition is a flavor-changing neutral current process that mediates through a one-loop penguin diagram. The decay is considered to be a good probe for the New Physics as particles predicted in the beyond Standard Model theories can enter into the loop. The exclusive decay B → K (*) l + l − was first observed by the Belle experiment and it provides many observables such as the branching fraction, CP asymmetry, forward-backward asymmetry, and other angular observables. Recently, the LHCb experiment has reported some clue of a lepton flavor universality violation from the branching fraction ratio of the B → Kµ + µ − and B → Ke + e − decays. In this presentation, we report the status of the B → Kl + l − decay analysis at the Belle II experiment which started the data taking in 2019. We also, present an activity at the Belle II Chulalongkorn University group where we study the B → KJ/ψ decay which has the same topology as the B → Kl + l − .


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Stefan Bißmann ◽  
Cornelius Grunwald ◽  
Gudrun Hiller ◽  
Kevin Kröninger

Abstract We perform global fits within Standard Model Effective Field Theory (SMEFT) combining top-quark pair production processes and decay with b → s flavor changing neutral current transitions and Z → $$ b\overline{b} $$ b b ¯ in three stages: using existing data from the LHC and B-factories, using projections for the HL-LHC and Belle II, and studying the additional new physics impact from a future lepton collider. The latter is ideally suited to directly probe ℓ+ℓ− → $$ t\overline{t} $$ t t ¯ transitions. We observe powerful synergies in combining both top and beauty observables as flat directions are removed and more operators can be probed. We find that a future lepton collider significantly enhances this interplay and qualitatively improves global SMEFT fits.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Xiao-Gang He ◽  
Xiao-Dong Ma

Abstract In this paper we systematically consider the baryon (B) and lepton (L) number violating dinucleon to dilepton decays (pp → ℓ+ℓ′+, pn → $$ {\mathrm{\ell}}^{+}\overline{\nu}^{\prime } $$ ℓ + ν ¯ ′ , nn → $$ \overline{\nu}\overline{\nu}^{\prime } $$ ν ¯ ν ¯ ′ ) with ∆B = ∆L = −2 in the framework of effective field theory. We start by constructing a basis of dimension-12 (dim-12) operators mediating such processes in the low energy effective field theory (LEFT) below the electroweak scale. Then we consider their standard model effective field theory (SMEFT) completions upwards and their chiral realizations in baryon chiral perturbation theory (BχPT) downwards. We work to the first nontrivial orders in each effective field theory, collect along the way the matching conditions, and express the decay rates in terms of the Wilson coefficients associated with the dim-12 operators in the SMEFT and the low energy constants pertinent to BχPT. We find the current experimental limits push the associated new physics scale larger than 1 − 3 TeV, which is still accessible to the future collider searches. Through weak isospin symmetry, we find the current experimental limits on the partial lifetime of transitions pp → ℓ+ℓ′+, pn → $$ {\mathrm{\ell}}^{+}\overline{\nu}^{\prime } $$ ℓ + ν ¯ ′ imply stronger limits on nn → $$ \overline{\nu}\overline{\nu}^{\prime } $$ ν ¯ ν ¯ ′ than their existing lower bounds, which are improved by 2−3 orders of magnitude. Furthermore, assuming charged mode transitions are also dominantly generated by the similar dim-12 SMEFT interactions, the experimental limits on pp → e+e+, e+μ+, μ+μ+ lead to stronger limits on pn → $$ {\mathrm{\ell}}_{\alpha}^{+}{\overline{\nu}}_{\beta } $$ ℓ α + ν ¯ β with α, β = e, μ than their existing bounds. Conversely, the same assumptions help us to set a lower bound on the lifetime of the experimentally unsearched mode pp → e+τ+ from that of pn → $$ {e}^{+}{\overline{\nu}}_{\tau } $$ e + ν ¯ τ , i.e., $$ {\Gamma}_{pp\to {e}^{+}{\tau}^{+}}^{-1}\gtrsim 2\times {10}^{34} $$ Γ pp → e + τ + − 1 ≳ 2 × 10 34 yr.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tobias Huber ◽  
Tobias Hurth ◽  
Jack Jenkins ◽  
Enrico Lunghi ◽  
Qin Qin ◽  
...  

Abstract With the first data being recorded at Belle II, we are at the brink of a new era in quark flavour physics. The many exciting new opportunities for Belle II include a full angular analysis of inclusive $$ \overline{B}\to {X}_s{\mathrm{\ell}}^{+}{\mathrm{\ell}}^{-} $$ B ¯ → X s ℓ + ℓ − which has the potential to reveal new physics, in particular by its interplay with the exclusive b → sℓ+ℓ− counterparts studied extensively at LHCb. In this paper, we present fully updated Standard Model predictions for all angular observables necessary for this endeavour. These predictions are tailored to Belle II and include an elaborate study of the treatment of collinear photons which become crucial when aiming for the highest precision. In addition, we present a phenomenological study of the potential for Belle II to reveal possible new physics in the inclusive decay channel, both in an independent manner and in combination with exclusive modes.


2017 ◽  
Vol 32 (14) ◽  
pp. 1750075 ◽  
Author(s):  
Debika Banerjee ◽  
Priya Maji ◽  
Sukadev Sahoo

The rare decays [Formula: see text] are important to probe the flavor sector of the standard model and to search new physics beyond the SM. Unlike pseudoscalar [Formula: see text] meson, the leptonic decays of vector [Formula: see text] mesons are not chirally suppressed which compensates for their short lifetimes, and results in significant branching ratios. In this paper, we estimate the branching ratios of [Formula: see text][Formula: see text] rare decays in [Formula: see text] model which is an extension of the SM with an extra [Formula: see text] gauge symmetry. We find that the branching ratios are increased from their corresponding standard model values and vary with the mass of [Formula: see text] boson. The lower the mass of [Formula: see text] boson, the higher is the branching ratio.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Svjetlana Fajfer ◽  
Jernej F. Kamenik ◽  
M. Tammaro

Abstract We explore the interplay of New Physics (NP) effects in (g− 2)ℓ and h→ℓ+ℓ− within the Standard Model Effective Field Theory (SMEFT) framework, including one-loop Renormalization Group (RG) evolution of the Wilson coefficients as well as matching to the observables below the electroweak symmetry breaking scale. We include both the leading dimension six chirality flipping operators including a Higgs and SU(2)L gauge bosons as well as four-fermion scalar and tensor operators, forming a closed operator set under the SMEFT RG equations. We compare present and future experimental sensitivity to different representative benchmark scenarios. We also consider two simple UV completions, a Two Higgs Doublet Model and a single scalar LeptoQuark extension of the SM, and show how tree level matching to SMEFT followed by the one-loop RG evolution down to the electroweak scale can reproduce with high accuracy the (g−2)ℓ and h→ℓ+ℓ− contributions obtained by the complete one- and even two-loop calculations in the full models.


Sign in / Sign up

Export Citation Format

Share Document