scholarly journals Sensitization of primary cultures from rat dorsal root ganglia with lipopolysaccharide (LPS) requires a robust inflammatory response

Author(s):  
Franz Nürnberger ◽  
Stephan Leisengang ◽  
Daniela Ott ◽  
Jolanta Murgott ◽  
Rüdiger Gerstberger ◽  
...  

Abstract Objective We investigated whether it is possible to induce a state of “LPS-sensitization” in neurons of primary cultures from rat dorsal root ganglia by pre-treatment with ultra-low doses of LPS. Methods DRG primary cultures were pre-treated with low to ultra-low doses of LPS (0.001–0.1 µg/ml) for 18 h, followed by a short-term stimulation with a higher LPS-dose (10 µg/ml for 2 h). TNF-α in the supernatants was measured as a sensitive read out. Using the fura-2 340/380 nm ratio imaging technique, we further investigated the capsaicin-evoked Ca2+-signals in neurons from DRG, which were pre-treated with a wide range of LPS-doses. Results Release of TNF-α evoked by stimulation with 10 µg/ml LPS into the supernatant was not significantly modified by pre-exposure to low to ultra-low LPS-doses. Capsaicin-evoked Ca2+-signals were significantly enhanced by pre-treatment with LPS doses being above a certain threshold. Conclusion Ultra-low doses of LPS, which per se do not evoke a detectable inflammatory response, are not sufficient to sensitize neurons (Ca2+-responses) and glial elements (TNF-α-responses) of the primary afferent somatosensory system.

2021 ◽  
Vol 70 (4) ◽  
pp. 429-444
Author(s):  
Franz Nürnberger ◽  
Stephan Leisengang ◽  
Daniela Ott ◽  
Jolanta Murgott ◽  
Rüdiger Gerstberger ◽  
...  

Abstract Objective Bacterial lipopolysaccharide (LPS) may contribute to the manifestation of inflammatory pain within structures of the afferent somatosensory system. LPS can induce a state of refractoriness to its own effects termed LPS tolerance. We employed primary neuro-glial cultures from rat dorsal root ganglia (DRG) and the superficial dorsal horn (SDH) of the spinal cord, mainly including the substantia gelatinosa to establish and characterize a model of LPS tolerance within these structures. Methods Tolerance was induced by pre-treatment of both cultures with 1 µg/ml LPS for 18 h, followed by a short-term stimulation with a higher LPS dose (10 µg/ml for 2 h). Cultures treated with solvent were used as controls. Cells from DRG or SDH were investigated by means of RT-PCR (expression of inflammatory genes) and immunocytochemistry (translocation of inflammatory transcription factors into nuclei of cells from both cultures). Supernatants from both cultures were assayed for tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by highly sensitive bioassays. Results At the mRNA-level, pre-treatment with 1 µg/ml LPS caused reduced expression of TNF-α and enhanced IL-10/TNF-α expression ratios in both cultures upon subsequent stimulation with 10 µg/ml LPS, i.e. LPS tolerance. SDH cultures further showed reduced release of TNF-α into the supernatants and attenuated TNF-α immunoreactivity in microglial cells. In the state of LPS tolerance macrophages from DRG and microglial cells from SDH showed reduced LPS-induced nuclear translocation of the inflammatory transcription factors NFκB and NF-IL6. Nuclear immunoreactivity of the IL-6-activated transcription factor STAT3 was further reduced in neurons from DRG and astrocytes from SDH in LPS tolerant cultures. Conclusion A state of LPS tolerance can be induced in primary cultures from the afferent somatosensory system, which is characterized by a down-regulation of pro-inflammatory mediators. Thus, this model can be applied to study the effects of LPS tolerance at the cellular level, for example possible modifications of neuronal reactivity patterns upon inflammatory stimulation.


2008 ◽  
Vol 436 (2) ◽  
pp. 210-213 ◽  
Author(s):  
Paola Sacerdote ◽  
Silvia Franchi ◽  
Anna Elisa Trovato ◽  
Anna Elisa Valsecchi ◽  
Alberto E. Panerai ◽  
...  

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Isha S Dhande ◽  
Tahir Hussain

Macrophages have been shown to be an important contributor to the pathogenesis of hypertension and stroke. The angiotensin AT2 receptor (AT2R), which is expressed in macrophages, is known to promote vasodialation, natriuresis and lower inflammation. The goal of the present study was to explore the anti-inflammatory role of AT2R stimulation in human macrophage-like THP-1 cells activated by lipopolysaccharide (LPS). Phorbol 12-myristate 13-acetate (PMA) differentiated macrophage-like THP-1 cells were treated with AT2R agonist C21 (1 μmol/L) for 30 minutes prior to activation with LPS (1 μg/ml). Media and cells were collected after 24 hours and were analyzed for levels of pro- and anti-inflammatory cytokines and proteins. Pre-treatment with C21 resulted in a 4-fold increase (104.8±6.1 vs 406.7±52.3) in anti-inflammatory interleukin-10 (IL-10) production and a 5-fold decrease (3560±237 vs 588.8±15.94) in pro-inflammatory tumor necrosis factor-α (TNF-α) levels in the media in response to LPS. Predictably, LPS resulted in a 6-fold up-regulation of iNOS expression which was prevented with C21 pre-treatment. A modest decrease in the anti-inflammatory macrophage mannose receptor C type 2 (MRC2) expression was detected with LPS treatment. AT2R agonist pre-treatment, however, increased this receptor expression by ~70% after LPS activation. C21 alone also resulted in a 20% increase in MRC2 expression compared to untreated controls. The anti-inflammatory effect of AT2R activation was abolished in the presence of neutralizing IL-10 antibody (1 μg/ml), indicating a central role for IL-10 in mediating the beneficial response to C21 in LPS activated macrophages. Further, inhibition of nitric oxide (NO) by L-NAME prior to C21 pre-treatment also prevented the decrease in TNF-α and increase in IL-10 in response to AT2R agonist, which suggests that the anti-inflammatory response to C21 may be mediated via increase in NO production prior to LPS activation of macrophages. In conclusion, AT2R stimulation may potentially suppress the inflammatory response of macrophages to LPS by shifting the balance from pro- to anti-inflammatory cytokine production and may prove to be beneficial in the control of the inflammatory component of stroke and hypertension.


JOR Spine ◽  
2020 ◽  
Vol 3 (4) ◽  
Author(s):  
Kathleen Vincent ◽  
Chethana Prabodhanie Gallage Dona ◽  
Todd J Albert ◽  
Chitra Lekha Dahia

2019 ◽  
Vol 28 (1) ◽  
pp. 201-213 ◽  
Author(s):  
Alysson V. Braga ◽  
Sarah O. A. M. Costa ◽  
Felipe F. Rodrigues ◽  
Ivo S. F. Melo ◽  
Marcela I. Morais ◽  
...  

2019 ◽  
Vol 81 ◽  
pp. 6
Author(s):  
S. Leisengang ◽  
D. Ott ◽  
J. Murgott ◽  
R. Gerstberger ◽  
C. Rummel ◽  
...  

Author(s):  
Stephan Leisengang ◽  
Daniela Ott ◽  
Jolanta Murgott ◽  
Franz Nürnberger ◽  
Rüdiger Gerstberger ◽  
...  

AbstractBackgroundGabapentinoids are known to reduce neuropathic pain. The aim of this experimental study was to investigate whether gabapentinoids exert anti-inflammatory and/or anti-nociceptive effects at the cellular level using primary cultures of rat dorsal root ganglia (DRG).MethodsCells from rat DRG were cultured in the presence of gabapentin or pregabalin, and we tested the effects of subsequent stimulation with lipopolysaccharide (LPS) on the expression of genes (real-time polymerase chain reaction) and production of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) by specific bioassays. Using Ca2+ imaging, we further investigated in neurons the effects of gabapentinoids upon stimulation with the TRPV-1 agonist capsaicin.ResultsThere is a small influence of gabapentinoids on the inflammatory response to LPS stimulation, namely, a significantly reduced expression of IL-6. Pregabalin and gabapentin further seem to exert a moderate inhibitory influence on capsaicin-induced Ca2+ signals in DRG neurons.ConclusionsAlthough the single inhibitory effects of gabapentinoids on inflammatory and nociceptive responses are moderate, a combination of both effects might provide an explanation for the proposed function of these substances as an adjuvant for the reduction of neuropathic pain.


1992 ◽  
Vol 68 (5) ◽  
pp. 1793-1803 ◽  
Author(s):  
J. Streit ◽  
C. Luscher ◽  
H. R. Luscher

1. In embryonic cocultures of spinal cord, dorsal root ganglia, and muscle, excitatory postsynaptic potentials (EPSPs) were recorded in motoneurons during focal electrical stimulation of the dorsal root ganglia or the spinal cord. 2. EPSPs were depressed in amplitude at high-frequency stimulation relative to a control frequency of 0.5 Hz by 47 and 75% at 5 and 10 Hz, respectively. This was true for composite EPSPs and unitary EPSPs. 3. The depression showed a wide range of variability between individual experiments. The degree of depression at 5 Hz was negatively correlated to the rate of spontaneous excitatory input the motoneurons received. There was no correlation to the soma size, the average amplitude of the EPSPs, the rheobase, or the input resistance of the motoneurons. 4. An increase in latency of EPSPs was observed concomitant with or preceding the synaptic depression in most experiments. Total transmission failures, which were absent at low-frequency stimulation, appeared during depression. 5. Large incremental steps in amplitude could be seen during depression, suggesting that several release sites were switched off and on together. 6. Decreasing the extracellular calcium concentration from 5 to 1 mM led to a decrease in the frequency sensitivity of the synaptic efficacy and to a decrease of the EPSP amplitude and latency. 7. Measurements of the antidromic conduction of action potentials evoked in the axons and recorded in the somata of dorsal root ganglion cells revealed an increase in latency and the appearance of conduction failures at stimulation frequencies of 1-10 Hz. The frequency modulation of conduction was decreased in 1 mM compared with 5 mM external calcium. 8. Together these findings suggest that conduction failures in the presynaptic axons contribute to the synaptic depression of EPSPs in embryonic motoneurons.


Sign in / Sign up

Export Citation Format

Share Document